T. Y. B. Sc. Examination-Mar./Apr. 2016 Statistics Paper – 303

Code:-8969

(Sampling Technique and Design of Experiment)

Time: - 3 hours Marks: 75

Instructions:- 1) There are five compulsory questions in this Q. Paper.

- 2) All question carry equal marks.
- 3) Statistical Tables will be provided on request.
- Q1 a) Define the term: Sampling. Simple random sampling.

08

- (i) Show that Sample mean is an unbiased estimator of population mean
- (ii) Derive an unbiased estimator of population total for simple random sampling without replacement
- b) Define simple random sampling .If (x_i, y_i) are a pair of variates defined on every 07 unit in the population and (\bar{x}, \bar{y}) are the corresponding means from a SRS of size n, then covariance is:

$$Cov(x_i - \bar{x})(y_i - \bar{y}) = \frac{N-n}{nN} \cdot \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})$$

OR

Q1 a) (i) prove that (in usual notation)

12

$$V(\bar{y}) = \frac{s^2}{n} (1 - f)$$

- (ii) Determine the sample size for population mean when coefficient of variation and confidence coefficient are given.
- b) From a list of 3042 names and addresses a sample of 200 names show an 03 investigation of 38 wrong addresses. Estimate the total number of addresses needing correction in the list and find the S.E. of the estimate.
- Q2 a) Define stratified random sampling. Show that in Stratified random sampling, 06 sample mean is unbiased estimator of population mean.
 - b) If f. p. c. is ignored then prove that:

- 09

$$V_{\text{opt.}} \leq V_{\text{prop.}} \leq V_{\text{ran}}$$

OR

Q2 a) Explain the method of taking systematic sample. What are the advantages of 06 systematic sampling.

	b)	Prove that (in usual notations) for systematic sampling	09
	0)	$V(\bar{y}_{sy}) = \frac{N-1}{N} S^2 - \frac{k(n-1)}{N} S_{wsy}^2$	
		Hence show that systematic sampling is more precise than SRS if and only if	
		Hence show that systematic sampling is more precise than site if and $S_{wsv}^2 > S^2$	
		···-	09
Q3	a)	Define the following Terms: (i) experimental unit, (ii) yield, (iii) treatments,	0)
		(iv) blocks, (v) experimental error, (vi) extraneous factors.	
	b)	Explain C.R.D., covering definition ,model,lay-out,advantages and	06
		disadvantages. OR	
Q3	a)	Discuss with suitable illustrations the role of Randomization, Replication and	07
		Local control in Design of Experiments.	
	b)	Describe Missing Plot Technique in the design of experiment. State its	08
		advantages, why this technique is not applicable in CRD?	ΔΩ
Q4	a)	Derive the formula for estimating missing yields of Two Plots (of different	US
	1. \	treatment of different block) in R.B.D. Also state ANOVA for such a design. Explain Latin square design covering definition ,model, lay-out, advantages	06
	o)	and dis- advantages.	
		OR	
Q4	a)	What is Factorial Experiment. Explain main effects and interaction effects in 2 ²	06
	ω,	factorial experiments. Also give its complete analysis.	
	b)	$\frac{1}{2}$	09
Q5		Define Treatment Contrast and Orthogonal Contrast with illustration of each.	06
QJ	b)	Explain main effects and Interactions for 2 ³ Factorial Experiment. Give analysis	09
	0)	of such design.	
		OR OR	
Q5	a)	Explain Yate's Method for 2 ³ factorial experiments.	09
ŲΣ	b)	and the or of the state of a section of each)	06
	σ	11 1100 10 40-110 0 1	