C	\sim	\Box	c.	1	2	1	E

SEM-V EXAMINATION NOV- 2014

		M-504: ADVANCED NUMERICAL METHODS	
TIME :2:	:30 HC	PURS	TOTAL MARKS:70
		INSTRUCTIONS: (1) All questions are compulsory. (2) Each question carries equal marks.	
Q.1	A B	Discuss: Ramanujan's Method Use Muller's method find root of equation x^3 -x-1=0.	[07] [07]
Q.1	A B	Discuss : Graffee's root squaring Method Discuss : the quotient difference method	[07] [07]
Q.2	A B	Discuss: Lin-Bairstows Method Using Ramanujan's Method obtain the first six convergent of the equa $x+x^3=1$	[07] tion [07]
Q.2	A B	Solve the equation x ³ -6x-13=0 using Horner's Method Discuss : Gauss Elimination's Method	[07] [07]
Q.3	A B	Discuss : Gauss Jordan's Method Discuss : Horner's Method	[07] [07]
Q.3	A B	Discuss: Method factorization. Solve $\begin{bmatrix} -2 & 4 & 8 \\ -4 & 18 - 6 \\ -6 & 2 - 20 \end{bmatrix}$ using Gauss Elimination's Method	[07] [07]
Q.4	A B	Discuss : Jacobi Method of Iteration Discuss : Crout's Method	[07] [07]
Q.4	A B	Discuss: Relaxation Method Discuss: Equation with real co-efficient and imaginary roots.	[07] [07]
Q.5	Α	Solve Equation x^3 -9 x^2 +26x-24=0 given that the roots are in arithmetic progression	[07]
	В	Discuss: transformation of equation.	[07]
Q.5	Α	Discuss multiples roots.	[07]

If a, b and c are the roots of $x^3+px+r=0$, form the equation whose roots are $(b-c)^2$, $(c-a)^2$, $(a-b)^2$.

[07]