B.Sc. Semester - V

NOV - 2014

Physics Paper: 501

Subject Code: 4294

[Classical Mechanics, Mathematical Physics]

Time: 2:30 Hours Total Marks:		: 70
Q – 1 (A)	Define Conservative system. Derive Lagrangian equation for conservative holonomic system.	11
(B)	Explain generalized coordinate.	03
*	OR	
Q-1(A)	Explain generalized potential. Obtain Lagrangian L and its equation for moving charge in an electromagnetic field.	09
(B)	Discuss the application of Atwood's machine.	05
Q - 2 (A)	Explain Rayleigh's dissipation function and its physical interpretation.	06
(B)	Explain different types of constraints with examples.	08
	OR	
Q - 2 (A)	Derive Euler's equation of first kind.	09
(B)	Discuss parallel L-C-R problem.	05
Q - 3 (A)	Discuss Brachistochrone problem.	0 9
(B)	Show that shortest distance between any two points in a plane is a straight line.	05
	OR	
Q-3(A)	Prove that Lagrangian, Hamilton and Newtonian formulations are equivalent.	12
(B)	Explain configuration space.	02
Q - 4 (A)	Define geodesic. Derive equation of great circle.	10
(B)	Derive equation of motion of a particle using polar coordinates.	04
	OR	
Q - 4 (A)	Derive Hamilton's equation of motion.	09
(B)	Derive Helmholtz equation and time dependent equation for wave equation.	05
Q - 5 (A)	Derive Laplacian operator in spherical polar coordinate system.	05
(B)	Derive Helmholtz equation in Cartesian coordinate system.	09
	OR	
Q - 5 (A)	Derive Helmholtz equation in spherical polar coordinate system.	12
(B)	Obtain Helmholtz equation for Schrodinger equation.	02