PAPER CODE: 4330

PAPER - ST- 501

Probability and Distributions

TIME: $2\frac{1}{2}$ Hours

4330

Marks: 70

INSTRUCTIONS: 1) There are 5 compulsory questions in this question paper.

- 2) All questions carry equal marks.
- 3) Use of Scientific calculator is allowed.
- 4) Statistical tables and graph paper will be provided on request.
- Q1 a) State and prove weak Law of Large Number.

7

b) Examine if the following sequence of random variable $\{X_k\}$, holds 7 C.L.T. or not?

Prob.
$$\{ X_k = \pm k^{\alpha} \} = \frac{1}{2} k^{-2\alpha} \text{ and Prob. } \{ X_k = 0 \} = 1 - k^{1-2\alpha}, \, \alpha < \frac{1}{2}$$

OF

- Q1 a) State and prove Chebyshev's Inequality for a continuous random 8 variable. Give the uses of Chebyshev's inequality.
 - b) Check whether for the sequence of random variable $\{X_k\}$, WLLN 6 holds good or not?

Prob. $\{X_k = 1/\sqrt{k}\} = 2/3 \text{ and Prob. } \{X_k = -1/\sqrt{k}\} = 1/3.$

- Q2 a) Define hyper geometric distribution. Show that under certain 9 conditions to be stated, hyper geometric distribution tends to binomial distribution.
 - b) Define a Beta distribution of second kind and find its mean and 5 variance.

OR

- Q2 a) Define beta distribution of First kind. Obtain expression for its rth raw 7 moment. Hence derive its first four raw moments.
 - b) Define hyper geometric distribution. Obtain an expression for its 7 mean and variance.
- Q3 a) For a bi-variate normal distribution, derive an expression for the 8 conditional distribution of Y given X = x.
 - b) If 13 cards are chosen at random (WOR) from an ordinary pack of 52 6 cards. Find the probability that,
 - i) 6 Cards are picture cards?
 - ii)None are picture card.

- Q3 a) Derive an expression for the marginal p. d. f. of Y for a bi-variate 9 normal distribution.
 - b) For bi-variate normal distribution, show that X and Y are independent, 5 iff $\rho = 0$.

8

6

Q4 a) i. State Lindberg-Levy's Central limit theorem.

ii. State Liapounoff's Central limit theorem.

b) Let $f(x) = 3x^2$, 0 < x < 1= 0 otherwise

A random sample of size 15 is taken from above population.

Use CLT to find the estimated value of -

- i. Prob. $\{0.6 < \bar{x} < 0.8\}$
- ii. prob. $\{ \bar{x} > 0.75 \}$

OR

- Q4 a) State the Liapounoff's C.L.T.
 - b) Examined whether the Weak law of large number holds for the 10 sequence $\{X_k\}$ of independent random variables defined as follows:

$$P[X_k = \pm 2^k] = 2^{-(2k+1)}, \qquad P[X_k = 0] = 1 - 2^{-2k}.$$

- Q5 a) Derive expression rth raw moment of Beta distribution of Second kind 8 its. Hence derive its Third and fourth raw moments.
 - b) Given the following bivariate normal distribution,

 $f(x,y) = k \cdot e^{-1/6[4(x+1)^2 - 2(x+1)(y-2) + (y-2)^2]}$

Find the parameters of the distribution. Hence find k.

OR

- Q5 a) Obtain an expression for the marginal p. d. f. of Y for a bi-variate 6 normal distribution.
 - b) Obtain an expression for factorial moment generating function of 8 hyper geometric distribution.