Merch-2015

B.Sc.EXAMINATION.

SEMESTER -VI

PAPER NO:M-602 TIME:2:30 HOURS

MATHEMATICAL ANALYSIS-II

CODE: 4620 TOTAL MARKS:70

INSTRUCTIONS: (1) All questions are compulsory.

(2) Each question carries equal marks.

Q.1	Α	Check which of the following subsets of (R,d) are compact and connected	08
		1.{1,2,3,,0} 2.{ $\frac{1}{n}$ / n ∈ N} 3. [0,1] 4. {x∈R/ $x^2+x+1=0$ }	00
	В	Prove: Every compact subset of metric space (x,d) is closed. OR	06
Q.1	Α	Continuous image of connected subset of metric is connected.	07
	В	(0,1) is not compact subset of metric space (R,d).	07
Q.2	Α	Prove: Continuous image of compact subset of metric space is compact.	07
	В	E_1 , E_2 E_3 , E_n are connected subspace of metric space (x ,d) and if $E_i \cap E_j \neq \emptyset$, $i \neq j$, $1 \leq l$, $j \leq n$ then $\bigcup_{i=1}^n E_i$ is connected.	07
	_	OR	
Q.2	A	Prove: Every finite subset of metric space is compact.	07
	В	Prove : (x ,d) is metric space and A \subset X is connected. For B \subset X if A \subset B \subset \bar{A} then B is connected.	07
Q.3	Α	State and prove Dirichlet's test for convergence of improper integrals.	07
	В	Examine for convergence $\int_1^\infty \frac{1}{x\sqrt{x^2+1}} dx$ and $\int_{e^2}^\infty \frac{dx}{x \log(\log x)}$.	07
		OR	
Q.3	A	State and prove Abel's test for convergence of improper integrals.	07
	В	State and prove half comparison test for convergence of improper integrals.	07
Q.4	A	Prove : The set of rational number is countable.	07
	В	The set of real number in [0,1] is uncountable. OR	07
Q.4	А	State and prove weistrass M –test for uniform convergence of series of functions.	07
	В	let { $A\alpha/\alpha \in I$ } be indexed collection of subsets of X, then 1.X- \cup {A $_{\alpha}/\alpha \in I$ } = \cap {X - A $_{\alpha}/\alpha \in I$ } = \cup {X - A $_{\alpha}/\alpha \in I$ } = \cup {X - A $_{\alpha}/\alpha \in I$ }	07
Q.5	Α	Cartesian product of two countable set is countable	
	В	State and prove Archimedean property of real numbers. OR	07 07
Q.5	A	Prove : The set of rational number is not order complete.	
	В	If $F : A \rightarrow B$ is one to one and B is countable then A is countable.	07 07