B. Sc Semester-VI Mathematics Examination March/April-2016 Mathematical analysis-II Paper No: M-602

Total Marks:70

Time: 2:30 hours
Paper code: 4626

Inote	national	
	uctions: All questions are compulsory.	
	Each question carry equal marks.	
Que-1.	(a) Prove that the usual metric space (\mathbb{R}, d) is not compact. (b) Let S be a finite subset of the usual metric space (\mathbb{R}, d) .	[7]
	Show that S is connected if and only if S is singleton.	[7]
0 1	or	
Que-1.	 (a) Let (X, d) be a discrete metric space and Ø ≠ A ⊂ X. Show that A is compact if and only if A is finite. (b) Show that a compact subset of a metric space is closed and bounded. 	[7]
Que-2.	 (a) Prove that union of two compact set is compact in any metric space (X, d). (b) Define convergence of improper integrals of both kind. 	
	Determine if the integral $\int_{-\infty}^{0} \frac{1}{\sqrt{3-x}} dx$ is convergent or divergent.	
	Find its value in case of convergence.	[7]
	or	
Que-2.	(a) Show that $\int_{-x^p}^{\infty} \frac{\sin x}{x^p} dx$ converges absolutely if $p > 1$.	
	(b) State and Prove Abel's test.	[7]
Que-3.	(a) State and prove comparison test.	[7]
	(b) Examine the convergence of the improper integral $\int_{0}^{\infty} x^{3}e^{-x^{2}}dx$.	[7]
^ •	or	
Que-3.	(a) Let $f:[a,b] \to \mathbb{R}$ be a bounded and integrable function. Show that the	
	function F defined as $F(x) = \int_a^x f(t)dt$, $a \le x \le b$ is continuous on $[a, b]$.	[7]
	(b) Define absolute convergence of an improper integral. Show that	
	$\int_{a}^{\infty} f dx$ exists, if $\int_{a}^{\infty} f $ exists, where $a \in \mathbb{R}$.	[7]
Que-4.	(a) Prove that the set of all rational number is countable.	[7]
	(b) Let $a, b \in \mathbb{R}$ and $a, b > 0$. Then prove that there exists a positive integer n such that $na > b$.	[7]
	or	
Que-4.	(a) Prove that [0, 1] is uncountable.(b) Prove that every subset of a countable set is countable.	[7] [7]

[7]

[7]

- Que-5. (a) State and prove Weierstrass M-test for uniform convergence of series of functions.
 - (b) Prove that the sequence $\{f_n\}$, where $f_n(x) = \frac{x}{1+nx^2}$, $x \in \mathbb{R}$, converges uniformly on [a,b]. [7]

- Que-5. (a) Test the uniform convergence of the series $\sum_{n=1}^{\infty} \frac{x}{n(1+nx^2)}$ for all $x \in \mathbb{R}$. [7]
 - (b) In usual notations show that for $x,y\in\mathbb{R},$ (i) $|x+y|\leq |x|+|y|,$ (ii) $||x|-|y||\leq |x-y|.$