APAIL - 20016

B.Sc. EXAMINATION: April-2016 SEMESTER-VI RING THEORY

PAPER NO.:M-601 TIME:2:30 HOURS

CODE NO:4619 TOTAL MARKS:70

INSTRUCTIONS(1)ALL QUESTIONS ARE COMPULSORY. (2)EACH QUESTION CARRY EQUAL

MARKS.

Q.1	. A	If R is Boolean ring then prove that R is commutative ring and also find characteristics of R.	07
	В	If R is the set of residue classes modulo 6 then	07
		Show that $(R_7, +_7, \bullet_7)$ is commutative ring.	Ų,
		OR	
Q.1	Α	Prove: Ring R is without zero divisor iff the cancelation laws hold in R.	07
	В	Define sub ring ,State and prove necessary and sufficient condition for nonempty subset S of ring R to be a sub ring of R.	07
Q.2	Α	If M and N are ideals of ring R then M + N is ideal of ring R.	07
	В	If f is homomorphism of ring R into ring R' with kernel S then S is an ideal of R. OR	07
Q.2	Α	Every finite integral domain is a field.	07
	В	If P is prime in principal ideal domain D iff an ideal <p> is maximal ideal in D.</p>	07
Q.3	Α	State and prove fundamental theorem on homomorphism of ring.	07
	В	Prove that an ideal I of the ring R is maximal ideal iff I is generated by some prime integer.	07
		OR	
Q.3	Α	If R is commutative ring, $a \in R$ and $I = \{ ax = 0 / x \in R \}$ then I is an ideal of R.	07
	В	Prove that an ideal M of commutative ring R with unity is maximal ideal iff R/M field.	07
Q.4	Α	Define UFD and prove that P is prime in PID iff is maximal ideal in D.	07
	В	Prove that every PID is UFD.	07
		OR	07
Q.4	Α	State and prove Euler's generalization theorem.	07
	В	State and prove factor theorem.	07
Q.5	Α	If $f(x) = x^4 - 3x^3 + 2x^2 + 4x - 1$ and $g(x) = x^2 - 2x + 3 \in \mathbb{Z}_5[X]$ then find	07
		q(x) and r(x) such that $f(x) = q(x) \cdot g(x) + r(x)$.	
	В	State and prove Eisenstein's criterion theorem.	07
		OR	٠,
Q.5	Α	State and prove division algorithm theorem.	07
	В	State and prove Euler theorem.	0.7