B.Sc (Sem. VI) Examination

Statistics: ST - 602

4626

Statistical Inference-II

Time: 2Hours]

[Total Marks: 70

- Q1 (a) Explain the following:
 - i) Confidence interval and confidence coefficient

4

- ii) Two type of errors
- (b) Describe the method of constructing a $100(1-\alpha)\%$ confidence interval for the mean of a normal population when (i) variance is known(ii) variance is unknown

OR

- Q1 (a) Giving suitable illustration explain the following terms:
 - (i) Null hypothesis (ii) Simple hypothesis
 - (iii) Composite Hypothesis

6

- (b) Explain the procedure fully to construct a $100(1-\alpha)\%$ confidence interval for μ_1 - μ_2 based on a r.s. of size n from a Bivariate Normal Population BNV $(\mu_1, \mu_2, \sigma_1, \sigma_2, \rho)$.
- Q2(a) Explain the following terms:
- (i) critical region (ii) power of the test (iii) size of the test (iv) p value of a test.
- (b) Given X_1 , X_2 , ..., X_n is a r.s. from a $N(\mu_1, \sigma_1^2)$ and y_1 , y_2 , ..., y_n is a r.v. from $N(\mu_2, \sigma_2^2)$, explain the procedure to construct $100(1-\alpha)\%$ confidence interval of ratio of variances of two normal populations.

OK

Q2 (a) Let X_1 , X_2 , ..., X_n is a r.s. from a N(10, σ_1^2) Find BCR for testing $H_0: \sigma^2 = 64$ Vs $H_1: \sigma^2 = 36$ further find its power function.

- (b) Find a MP test with size α to test $H_0: \theta = \theta_0$ Vs $H_1: \theta < \theta_1$ on a r.s of size n from Binomial $(3, \theta)$ $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$ (where $\theta_1 < \theta_0$) based on a r.s. of size n from a Poisson distribution with mean θ .
- Q3(a) State and prove the Neyman-Pearson Theorem to obtain a best critical region of size α to test a simple null hypothesis versus simple alternate hypothesis.
 - (b) Apply Nyman Pearson Theorem to a obtain a most powerful test of size α to test $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$ (where $\theta_1 < \theta_0$) based on a random sample of size n from Poisson Distribution with mean θ

OR

- Q3(a) Describe the Wilcoxon Sign Rank test covering purpose, statistical hypotheses, nature of data, method, test statistic and decision. 8
- (b) Explain the difference between parametric and non-parametric tests. 6
- **Q4** (a) Find a UMP size α test to test $H_0: \theta = \theta_0$ against $H_1: \theta_1 < \theta_0$ based on a random sample of size 'n' from

$$f(^x/_{ heta})=~1/\theta~e^{-x/ heta}$$

$$0~,o< x< \alpha~,o~< heta \leq~ heta_0, heta>o$$

8

6

(b)Explain the advantages and disadvantages of non-parametric method.

OR

Q4 (a) Give the definition of UMP test size of α to test $H_0: \theta \in \omega_0$ against $H_1: \theta \in \omega_1$ Further show that there is no UMP test for testing $H_0: \mu = \mu_0$ against $H_0: \mu \neq \mu_0$ based on a random sample of size 'n' from $N(\mu, \sigma^2)$ where σ^2 is known from past experience.

(b) Given the following paired sample observations:

$$(1,4),(2,6),(3,8),(5,10),(7,12),(9,13),(11,14),(18,15).$$

Test the hypothesis that these paired samples have come from same populations by using:

- (1) Sign test
- (2) Wilcoxon test

4

Q5

- (a) Explain Mann Whitney test for two samples covering:
- (1) statistical hypothesis (2) nature of samples (3) procedure (4) test statistic
- (5) decision (6) normal approximation.

8

(b) Let X_1, X_2, \dots, X_n be a random sample of size n from an exponential distribution with pdf.

$$f(x,\theta) = \begin{cases} \theta \cdot e^{-\theta x} & , x > 0 \\ 0 & , oth rewise \end{cases}$$

Where, $0 < \theta < \infty$. Find the MP test of size α for testing H₀: θ =1 against H₀: θ =2.

6

OR

Q5(a) Let $x_1, x_2, x_3, ... x_n$ be a random sample from N(μ , 16). Find BCR for testing H₀: μ =16 against H₁: μ =10.

(b) Explain Kolmogorov Smirnov test for one sample of goodness of fit. 7