M.Sc (Sem. I) Examination

Paper – III: Inference – I,

Time: 2 Hours 1

Dec - 2016 Ge 2754 Total Marks: 70

Instruction:

(I) : All Questions are compulsory

(II): All Questions carry equal marks.

- 1. (a) Defien MVUE. State and prove Rao –Blackwell theorem.
- (b) Define unbiased estimator. Obtain two unbiased estimators for σ in case of normal $N(\mu, \sigma^2)$ distribution where μ is known. Which estimator do you prefer? Why?

OR

- 1. (a) Define consistent estimator of θ . Show that If T is consistent for θ then g(T) will also be consistent for g(θ) but such property is not true in case of unbiased estimator. Verify it by example
- (b) Obtain MVUE for θ using Rao –Blackwell theorem based on a random sample from uniform distribution U(0, θ).
- 2. (a) Define complete family of distribution. Show that one parameter exponential family is a complete family.
- (b) State UMVUE. Obtain UMVUE for $e^{-\lambda}$ based on a random sample from Poisson distribution with mean λ , $\lambda > 0$.

OR

2. (a) State and prove Cramer –Rao inequality. Obtain CRLB for an unbiased estimator for $e^{-\lambda}$ based on a single observation from Poisson distribution with mean λ , $\lambda > 0$. Show that

UMVUE of $e^{-\lambda}$ does not attained the CRLB.

- (b) State and prove Neyman Fisher Factorization theorem.
- 3. (a) Prove that If MVUE exists, it is unique.

(b) Define MLE. Show that MLEs are asymptotical normally distributed. Let $X_1, X_2, ..., X_n$ be a random sample from the exponential distribution with location parameter μ and scale parameter θ . Obtain MLEs of the parameters.

OR

- 3. (a) Define method of moments for estimating the parameters of the given distribution. Obtain moment estimators of the parameters of U(a, b),a<x
b distribution based on a random sample of size n.
 - (b) Let $(X_1, X_2, ..., X_n)$ be i.i.d with. $f(x, \theta) = \theta e^{-x\theta}$, $\theta > 0$ Obtain MLE of θ . Find its asymptotic S.E.
- 4. (a) Discus the situations with illustration where the parameter of the distribution is it self a random variable. In which estimation method such concept is used? How does it differ from classical method of estimation?
- (b) Define Bayes risk and Bayes estimator. Obtain general form of Bayes estimator under squared error loss functions.

4. (a) A random sample of size n is taken from binomial distribution with mean $n\theta$. If prior distribution of θ is beta distribution with parameters a and b, a < b obtain Bayes estimator of θ under squared error loss function.

(b) A random sample of size n is taken from Poison distribution with parameter λ , > 0. If λ , has prior p.d.f. Gamma(α , β), α , $\beta > 0$ then obtain Bayes estimator of λ , under squared error loss function.

- 5. (a) Let X_1 and X_2 is from $N(\theta,1)$ then obtain information contained in given random sample.
- (b) Construct 95% confidence interval for σ , in case of $N(\mu, \sigma^2)$ distribution, when μ is known based on a random sample of size n.

OR

- 5. (a) Discuss shortest length confidence interval. How do you construct it? Explain by example.
 - (b) Let $(X_1, X_2, ..., X_n)$ be i.i.d with $f(x, \theta) = \theta e^{-\theta x}$, x > 0, $\theta > 0$. Obtain $(1-\alpha)100\%$ confidence interval for θ .