October-2015

M.sc.IT Semester – I

Paper No – 2: Discrete Mathematics Paper Code: 2737

1 III	Time: 2:30 Hours Marks: 70				
Q.1	(a)	If we define a relation S on a set of real numbers R as $_xS_y$ if $x \le y$. Show that (S, \le) is partially ordered set (POSET).	[7]		
	(b)	Explain following with example:	[7]		
		(i) Lower Bound (ii) Upper Bound			
		s OR			
Q.1	(a)	Draw Hasse diagram for the following POSETs:	[7]		
		 (i) < P(A), ⊆ >, where A = {a, b} (ii) < S₃₀, D >, where D denotes the relation of divisor 			
	(b)	Explain various properties of Relation.	[7]		
Q.2	(a)	Find (i) ${}_{9}P_{5}$ (ii) ${}_{10}C_{4}$ (iii) ${8 \choose 2} + {}_{8}P_{2}$ (iv) $5{6 \choose 0}$	[7]		
	(b)	State and prove the formula for r – combination of an n – set.	[7]		
		OR			
Q.2	(a)	Solve a recurrence relation $a_n = n$ a_{n-1} with $a_1=1$. Also find a_{10} using this solution.	[7]		
	(b)	How many even numbers of three digits can be formed?	[7]		
Q.3	(a)	none of them?	[7]		
		(i) $q \land (p \lor q) \leftrightarrow q$ (ii) $(p \lor q) \leftrightarrow ((\sim q) \land (\sim p))$			
		Where \sim indicates negation.			
	(b)	Explain with example:(i) Simple statement (ii) Negation of a statement	[7]		
		OR			
Q.3	(a)	(i) State principle of mathematical induction.	[7]		
		(ii) Write truth tables for (A) conditional (B) bi-conditional statement.			
	(b)	In each of the following cases, verify whether the given conclusion C follows from the given premises H1 and H2.	[7]		
		(i) H1: $\sim p$ H2: $p \leftrightarrow q$ C: $\sim (p \lor q)$			
		(ii) H1: $p \leftrightarrow q$ H2: q C: p			

Q.4		Define the following terms and give one example of each:	[14]
		(i) Loop (ii) Parallel edges (iii) Incident vertices (iii) Pendent vertex (iv) Circuit (v) Disconnected graph (vi) Tree (vii) Complete graph.	
		OR	
Q.4	(a)	(i) Draw a regular graph with 6 vertices which is not a complete graph	[7]
		(ii) Draw a K5 graph.	
		(iii) Draw a planner graph.	
	(b)	State and prove Fundamental theorem of graph theory.	[7]
Q.5	(a)	Prove that there is only one path between every pair of vertices in a tree.	[7]
	(b)	Explain Konigsberg Seven Bridge Problem.	[7]
		OR	
Q.5	(a)	Write a short note on Four Color Problem.	[7]
	(b)	Explain with example: How to find centre of a graph?	[7]
		Explain with example: How to find centre of a graph?	