M. Sc. (Mathematics) Semester-I Paper 4: Number Theory

MARCH-APRIL-2016 COUL: 2751 Total Marks: 70

Q-1. (a) Prove that $32(a^2+3)(a^2+7)$, for any odd integer a.

[7]

(b) Given integers a and b, not both of which are zero, show that $\{ax + by / x, y \text{ are integers}\} = \{kd/k \text{ is integer}\}\$, where $d = \gcd(a,b)$.

[7]

1

OR

Q-1. (a) Prove: the qube of any integer has one of the forms 9k, 9k + 1 or 9k + 8.

[5]

(b) Discuss: Euclidean Algorithm.

[9]

Q-2. (a) Find integers x and y satisfying gcd(138, 42) = 138x + 42y.

[7]

(b) For positive integers a and b, prove that gcd(a,b)lcm(a,b) = ab.

[7]

OR

Q-2. (a) State and prove Fundamental Theorem of Arithmetic.

[9]

(b) Prove: $\sqrt{2}$ is an irrational number.

[5]

Q-3. (a) If $ca \equiv cb \pmod{n}$, then prove that $a \equiv b \pmod{\frac{n}{d}}$, where $d = \gcd(c, n)$.

[7]

(b) Find the remainder when the sum $1^7 + 2^7 + 3^7 + \dots + 100^7$ is divided by 4.

[7]

OR

Q-3. (a) Solve the linear congruence:

[6]

 $6x \equiv 15 \pmod{21}.$

(b) State and prove Chinese Remainder Theorem.

[8]

PTO]

Q-4.	(a) (b)	and the tilt digit of / .	[7] [7]
		OR	
Q-4.	(a)	Find the remainder when 9^{100} is divided by 21.	[5]
	(b)	Prove: the quadratic congruence $x^2 + 1 \equiv 0 \pmod{p}$, where p is an odd prime has a solution if and only if $p \equiv 1 \pmod{4}$.	[9]
Q-5.	(a)	Find the formula of $\sigma(n)$ for $n > 1$.	[7]
	(b)	Prove that the Euler function φ is multiplicative.	[7]
		OR	
Q-5.	(a)	Prove that the Mobius function μ is multiplicative.	[7]
	(b)	Prove that $\varphi(n)$ is an even integer, for all $n > 2$.	[7]