November - 2015 M. Sc. (Mathematics) Sem. - I Paper 4: Number Theory

code: 2751

Total Marks: 70

Q-1	(a)	Prove that the qube of any integer has one of the forms $9k$, $9k + 1$ or $9k + 8$.	[8]
	(b)	Determine Euclidean Algorithm.	[6]
		OR	
Q-1	(a)	Given integers a and b , not both of which are zero, show that $\{ax + by / x, y \text{ are integers}\} = \{kd / k \text{ is integer}\}\$, where $d = \gcd(a, b)$.	[7]
	(b)	If $gcd(a, b)=1$, then show that $gcd(a^3, b^3)=1$.	[7]
	·		
Q-2	(a)	State and prove Fundamental Theorem of Arithmetic.	[8]
	(b)	If p_n is the n^{th} prime number then show that $p_n \le 2^{2^{n-1}}$.	[6]
		OR	
Q-2	(a)	Prove that there are an infinite number of primes.	[7]
	(b)	Prove: A composite integer n will always possess a prime divisor p satisfying $p \le \sqrt{n}$.	[7]
Q-3	(a)	If $ca \equiv cb \pmod{n}$, then prove that $a \equiv b \pmod{\frac{n}{d}}$, where $d = \gcd(c, n)$.	[7]
	(b)	Find the remainder when the sum $1^7 + 2^7 + 3^7 + + 100^7$ is divided by 3.	[7]
		OR	
Q-3	(a)	Solve the linear congruence: $6x \equiv 15 \pmod{21}$.	[7]
	(b)	If p is a prime then prove that $a^p \equiv a \pmod{p}$, for any integer a.	[7].

State and prove Chinese Remainder Theorem. Q-4 (a) [7] If *n* is prime then, prove that $(n-2)! \equiv 1 \pmod{n}$. (b) [7] OR Q-4 Prove: the quadratic congruence $x^2 + 1 \equiv 0 \pmod{p}$, where p is an odd [7] prime has a solution if and only if $p \equiv 1 \pmod{4}$. If p and q are distinct primes such that $a^p \equiv a \pmod{q}$ and $a^q \equiv a \pmod{p}$, then show that $a^{pq} \equiv a \pmod{pq}$. Q-5 (a) Find the formula for $\tau(n)$ for n > 1. [7] For n > 2, prove that $\varphi(n)$ is an even integer. (b) [7] OR Find the formula for $\sigma(n)$ for n > 1. Q-5 (a) [7] Prove that the Mobius function μ is multiplicative. (b) [7]

aaaa