Total Marks: 70

- Q.1 (a) Let $X \neq \emptyset$ and $\mathcal{C} \subseteq X$. Prove that there exist a smallest σ —algebra of [7] sets containing \mathcal{C} .
 - (b) Let $a \in \mathbb{R}$. Show that the interval (a, ∞) is measurable. [7]

OR

- Q.1 (a) Show the existence of a non-measurable set. [7]
 - (b) Prove that a Lebesgue measure function m is countable subadditive [7] and then show that it is countable additive also.
- Q.2 (a) If f is a measurable function and $f=g\ a.e.$ then prove that g is [7] measurable function.
 - (b) Let D be a Borel set, α be any real number and $f: D \to [-\infty, \infty]$. Prove [7] that the set $\{x \in D: f(x) < \alpha\}$ is Borel set if and only if the set $\{x \in D: f(x) \geq \alpha\}$ is Borel set.

OR

Q.2 (a) Let $A, B \subseteq \mathbb{R}$. Show in usual notations:

i) $\mathcal{X}_{A \cap B} = \mathcal{X}_A \mathcal{X}_B$ (ii) $\mathcal{X}_{A \cup B} = \mathcal{X}_A + \mathcal{X}_B - \mathcal{X}_A \mathcal{X}_B$

- (b) Let $\{f_1, f_2, \dots \dots \}$ be a countable collection of measurable functions [7] with same domain then prove that $\overline{lim}f_n$ and $\underline{lim}f_n$ are measurable function.
- Q.3 (a) Let $f: [-1, 6] \to \mathbb{R}$ be given by $f(x) = 2x^2$. Find upper sum and lower [7] sum of f for a subdivision $-1 < \frac{-1}{2} < 0 < 1 < 2 < 5 < 6$ of : [-1, 6].

OR

Q.3 (a) Give an example of a function which is not Riemann integrable. Justify [7] your answer.

[7]

(b) Let
$$\varphi \colon \mathbb{R} \to [-\infty, \infty]$$
 be defined as $\varphi(x) = \begin{cases} -2 & \text{if } x \in (1, 2] \\ 2 & \text{if } x \in (3, 5) \\ 0 & \text{otherwise} \end{cases}$ Find (i) $\int \varphi$ (ii) $\int_{(-3,2]} \varphi$ (iii) $\int_{(1.5,3.5)} \varphi$

- Let f and g be two non-negative measurable functions. If f is Q.4 [7] integrable over a set E and f(x) > g(x), $x \in E$ then prove that the function g is integrable over E and $\int_E \ (f-g) = \int_E \ f - \int_E \ g$
 - (b) Let f be a real valued function and $c \in \mathbb{R}$. Prove: [7] (i) $(-f)^+ = f^-$ (iii) $(cf)^+ = \begin{cases} cf^+ & \text{if } c \ge 0 \\ -cf^- & \text{if } c < 0 \end{cases}$ (iv) $(cf)^- = \begin{cases} cf^- & \text{if } c \ge 0 \\ -cf^+ & \text{if } c < 0 \end{cases}$

- Let f and g be non-negative measurable functions defined on the [9] same set E of finite measure. Prove that $\int_E (f+g) = \int_E f + \int_E g$ Let $f: \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = -x^2 + 3x - 2$.
 - [5] Find $f^+(-3)$, $f^-(3)$, $f^+(-1)$, f^{-1} , $f^-(0)$.
- Q.5 State and prove Riemann Lebesgue Theorem. [7]
 - Let f be integrable function over [a,b] and $F(x)=\int_a^x f(t)dt$ then [7] show that F is a continuous function of bounded variation on [a, b].

OR

- Define absolutely continuous function and show that every absolutely Q.5 (a) [7] continuous function is continuous function.
 - (b) Let $f:[1,5] \to \mathbb{R}$ be defined as $f(x)=x^2+1, \forall x\in [1,5]$. Find p,n[7] and t for a subdivision 1 < 2 < 3 < 4 < 5.

Q.4