M.Sc. Physics Examination

Semester - I NoV. 2014

Paper No - C103 Mathematical Methods in Physics

Paper Code - 4514

Time: 2 Hours 30 min Maximum Marks 70 Notes: (1) - All questions are compulsory. (2) Number in square bracket indicate marks

- Q.1 (a) Obtain the scale factors for curvilinear coordinate system. [6]
 - (b) Find $\nabla^2(r^2)$ and $\nabla^2(1/r^2)$ using spherical polar coordinate system. [4]
 - (c) Prove that curl of electric field is zero. [4]

OR

- (a) Express the Cartesian component of dell (∇) operator in spherical coordinates. [8]
- (b) Calculate divergence and curl of position vector. [6]
- Q. 2 (a) State and prove Cauchy's integral Theorom. [7]
 - (b) Evaluate the following integral using residue theorem [7]

$$\int_{0}^{2\pi} \frac{d\theta}{5 - 4\cos\theta}$$

(a) Find the residues of the following functions at given points

(i) $\cot z$ at z = 0 (ii) $\frac{z}{(3z-1)(5-z)}$ at $z = -\frac{1}{3}$, 5

- (b) Find whether the functions given below are analytic or not. [5]
 - (i) z^3 (ii) $\sin z$ (iii) z^*
- Q. 3 (a) Prove following recursion relation for Legendre Polynomial

$$J_{n-1}(x) + J_{n+1}(x) = \frac{2n}{x} J_n(x).$$

(b)Obtain the generating function for Bessel's polynomials.

- - ··**J** ····· ··· ·----- ·

[9]

[7]

[7]

(a) Prove that $\int_{-1}^{+1} (x^2 - 1) P_{n+1} P'_n dx = \frac{2n(n+1)}{(2n+1)(2n+3)}$

- (b) Solve $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 5y = 0$, if y = 2 and $\frac{d^2y}{dx^2} = \frac{dy}{dx}$, when x = 0 [5]
- (c) Using Rodrigue's formula, prove that [4]

$$\int_{-1}^{+1} P_n(x) \, dx = 0, (n \neq 0)$$

Q. 4 (a) Solve the given simultaneous differential equations for x(t) and y(t) with the help of Laplace transform methods

$$\frac{dx}{dt} + x + 4y = 10 \qquad &x - \frac{dy}{dt} - y = 0$$

Given that x(0) = 4, y(0) = 3 [10]

(b) Write formula for generating function of Hermite and Laguerre functions. [4]

OR

- (a) Using the method of separation of variables obtain the solution of a wave equation applicable to the spherical membrane. [8]
- (b) Show that the value of the integral [6]

$$\int_{-1}^{+1} x^2 P_3(x) \, dx = 0$$

Q.5 (a) Find f(t) if $L\{f(t)\} = \log\left(\frac{s+2}{s-3}\right)$ [7]

(b) Solve the given equation for the response of i(t) [7]

$$\frac{di}{dt} + 2i + 5 \int_0^t i dt = u(t)$$

Given that i(0) = 0

OR

(a) If Fourier transform of Dirac Delta function $\delta(t)$ is 1, then prove that $\delta(t) = \frac{1}{\pi} \int_0^\infty \cos \alpha t \ d\alpha$ [7]

(b) Using the Laplace transform of Dirac delta function $\delta(t)$, Solve the following initial value problem (IVP)

$$y'' + 3y' - 10y = 4\delta (t - 2)$$

Boundary conditions are given as y(0) = 2, $y'^{(0)} = -3$ [7]