NOV-2017

M.Sc (Sem. I) Examination Cstatistics)

Paper - 3: Inference - I (Theory of Estimation)

Code - 2754

Time: 2.30 Hours]

[Total Marks:70

Instruction: (I) : All Questions are compulsory

(II): All Questions carry equal marks.

1. (a) If X_1 and X_2 follows Poisson (θ) then prove that,

i. $T_1 = X_1 + X_2$ are sufficient statistics for θ .

ii. $T_2 = X_1 + 2X_2$ is not sufficient for θ .

(b)) Define complete statistic. Show that if sufficient statistic is complete, it is always minimal sufficient.

OR

- 1.(a)Define Fisher information contained in a statistic T. State and prove Lehman-Scheffe theorem.
- (b) Obtain UMVUE for P(X=r) , based on a random sample from a exponential variate with parameter $\theta\!\!>\!\!0$
 - 2. (a)) Let $_{X1}$, $_{X2}$,..., $_{Xn}$ be a random sample from the exponential distribution with location parameter μ and scale parameter σ . Obtain MLE of μ +2 σ .
- (b) State and prove Cramer –Rao (C-R)inequality. Obtain CRLB for an unbiased estimator for p based on a random sample of size n from Bernoulli distribution with parameter p, 0 .

OR

- 2. (a) Define complete family of distribution. Show that exponential family is a complete family.
- (b) Let X_i Follows $N(\theta,1)$ and statistic $T_1 = lX_1 + mX_2$, then derive information contained in statistic T_1 when (i) l = m.

- 3. (a) Define MVUE. State and prove Rao –Blackwell theorem.
- (b) Define MLE. State and prove invariance property of MLE.

- 3. (a) Let X1,X2,...,Xn be a random sample form the p.d.f. f(x) = 1/b-a; a <x<b, obtain the MLE's of a and b. Also obtain moment estimator of a & b.
- (b) State UMVUE. Show that it is unique, if it exist. Obtain UMVUE for $e^{-\lambda}$ based on a random sample from Poisson distribution with mean λ , $\lambda > 0$.
- 4. (a) Define loss function, prior distribution and posterior distribution, illustrations

- (b) Explain the Method of Minimum Chi-square. OR

 4. (a) Let $(X_1, X_2, ..., X_n)$ be i.i.d with $f(x, \theta) = \theta e^{-\theta x}$, x > 0, $\theta > 0$. Obtain $(1-\alpha)100\%$ confidence interval for θ .
- (b) A random sample of size n is taken from Poison distribution with parameter If λ has gamma gamma(a,b), a>0, b> 0 prior distribution then obtain Bayes estimator of λ under squared error loss function.
- 5. (a) State confidence interval for $g(\theta)$ and interpret it. Discuss the pivotal method of construction of confidence interval with illustration.
- (b) Construct 95% confidence interval for θ , in case of U(0, θ) uniform largest order statistic of a random sample of size n. distribution based on a

OR

- 5. (a) A random sample of size n is taken from binomial distribution with mean np. If prior distribution of p is beta type – I distribution with parameters a and b, a < b obtain Bayes estimator of p under squared error loss function.
- (b) Let $X_1, X_2, ..., X_n$ be a random sample of size from N (θ, σ^2) Obtain 95% confidence interval for σ^2 .