Dec-2016:

M.Sc.(Sem. -I) EXAMINATION

STATISTICS :PARER 01 - 2752

Linear Algebra

TIME: Two Hours.

TOTAL MARKS:70

8

6

Note: (i) All Questions are Compulsory

- (ii) All Full Questions carry equal marks.
- 1. (a) If A: m×m, B: m×n, C: n×m and D: n×n are matrices and P: (m+n) × (m+n) is a nonsingular matrix such that

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
 then show that

$$P^{-1} = \begin{bmatrix} A^{-1} + A^{-1}BQCA^{-1} & -A^{-1}BQ \\ -QCA^{-1} & Q \end{bmatrix}$$
 if A is

nonsingular and $Q = (D - CA^{-1}B)^{-1}$.

(b) Explain (i)linearly independent (ii)linearly dependent (iii) basis (iv) orthogonal vector

OR

- 1. (a) Show that square matrix A is non-singular iff all its columns are linearly independent
 - (b) For any two matrices $A_{p \times m}$ and $B_{p \times n}$ prove that $\operatorname{Max}[\rho(A), \rho(B)] \leq \operatorname{rank}(A, B) \leq \operatorname{rank}A + \operatorname{rank}B$
- (1) Show that $\{(1,1,0),(1,0,1),(0,1,1)\}$ is a basis of $V_3(R)$. 2. (a) (2) prove that A set of orthogonal vectors is always L.I. 8
 - (b) Show that the system of linear non-homogeneous equation $A\underline{x} = \underline{b}$ is consistent, if ρ (A, b)= ρ (A).

		OR	
2	. (a)	Show that for matrix $A_{n \times n}$ Rank(A)+ Rank(I-A) -n= Rank((I-A) A)	8
	(b)	For any two matrices A and B prove that	6
		ρ (AB)= ρ (BA)=. ρ (A) , B is non-singular.	
3.	(a)	Show that matrix $A_{m \times n}$ is idempotent matrix iff Rank(A)+ Rank(I-A) = n	6
	(b)	Show that \overline{A} exists iff $H = \overline{A} A$ is idempotent	8
		OR	
3	(a)	Explain types of g-inverse	6
	(b)	Reduce the symmetric matrix	8
4.	(a)	$A = \begin{bmatrix} 4 & 2 & 1 \\ 3 & 1 & 0 \\ 1 & 0 & -1 \end{bmatrix}$ to a diagonal matrix D.	
	()	Let \overline{A} be any g-inverse of A and $H=\overline{A}A$, then prove that general solution of a consistent non-homogeneous equation $Ax=y$ is $x=\overline{A}y+(i-H)z$, z is any arbitrary vector.	6
	(b)	Define (1) a g- inverse A^- of a matrix A and (2) The Moore-Penrose g-inverse of a matrix.	8
		Further find a g-inverse of $\begin{bmatrix} 3 & -1 & 1 \\ 2 & 3 & -3 \end{bmatrix}$.	
4.	(a)	Write a note on(i) Types of Quadratic form	8
	(b)	Show that \overline{A} exists iff $A \overline{A} A = A$	6
5	(a) (b)	Explain Gram Smith orthogonalization process Explain Sylvester's Criterion for positive definite form.	6 8
		Is the following quadratic form is positive definite? i. $Q(x) = X_1^2 + 2X_2^2 + 7X_3^2 - 2X_1X_2 + 4X_1X_3 - 6X_2X_2$	`

5	(a)	Prove that Moore-Penrose g-inverse of a matrix is unique.	8
	(b)	Define following terms (i) equivalence of Quadratic forms (ii) Quadratic forms (iii)Rank of Quadratic form (iv Normal form of Quadratic form (v) Signature of Quadratic form (vi)Diagonal form of a Quadratic form.	6