OCT-NOV- 2017

M.Sc.(Sem. -I) EXAMINATION

STATISTICS: PARER 01, SUB CODE - 7752

Linear Algebra

TIME: Two Hou2.30hrs.

TOTAL MARKS:70

8

Note: (i) All Questions are Compulsory

- (ii) All Full Questions carry equal marks.
- 1. (a) Let \$\overline{A}\$ be any g-inverse of A and \$H=\overline{A}\$ A, then prove that general solution of a consistent non-homogeneous equation Ax=y is \$x=\overline{A}\$ y + (i H)z, z is any arbitrary vector.
 (b) Explain (i)linearly independent (ii)linearly dependent (iii) basis (iv) orthogonal vector

OR

- 1. (a) Show that the system of linear non-homogeneous equation Ax = b is consistent, if $\rho(A, b) = \rho(A)$.
 - (b) Attempt the following:
 (1) Determine whether the set of vectors
 { (1,0,-1), (1,2,1), (0,-3,2)} form a basis of R³.
 5)}.
 (2)A set of orthogonal vectors is always L.I.
- If $A: m \times m$, $B: m \times n$, $C: n \times m$ and $D: n \times n$ are 2. (a) matrices and $P: (m+n) \times (m+n)$ is a nonsingular matrix such that

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
 then show that

$$P^{-1} = \begin{bmatrix} A^{-1} + A^{-1}BQCA^{-1} & -A^{-1}BQ \\ -QCA^{-1} & Q \end{bmatrix}$$
 if A is

	(b)	nonsingular and $Q = (D - CA^{-1}B)^{-1}$.	6
	(0)	Prove that (in usual notations) $\rho(AB) \leq \min(\rho(A), \rho(B)).$	v
2.	(a)	OR Show that square matrix A is non-singular iff all its rows are linearly independent.	8
	(b)	For any two matrices A and B prove that	6
		ρ (AB)= ρ (BA)=. ρ (A) , B is non-singular.	
3.	(a)	Show that matrix $A_{m \times n}$ is idempotent matrix iff Rank(A)+ Rank(I-A) = n	6
	(b)	Show that \overline{A} exists iff $A \overline{A} A = A$	8
		OR	
3	(a)	Show that \overline{A} exists iff $H = \overline{A} A$ is idempotent	6
	(b)	Define (1) a g- inverse A^- of a matrix A and (2) The Moore-Penrose g-inverse of a matrix.	8
		Further find a g-inverse of $\begin{bmatrix} 3 & -1 & 1 \\ 2 & 3 & -3 \end{bmatrix}$.	
4.	(a)	Define Moore-Penrose g-inverse of a matrix. Prove that it is unique.	8
	(b)	Explain Sylvester's Criterion for positive definite form.	6
		Is the following quadratic form is positive definite? i. $Q(x) = X_1^2 + 2X_2^2 + 7X_3^2 - 2X_1X_2 + 4X_1X_3 - 6X_2X_3$	
		OR	
4.	(a)	Write a note on(i) Types of Quadratic form	8
	(b)	Explain Gram Smith orthogonalization process	6
5	(a)	Explain type of g-inverse	8

(b) Reduce the quadratic form $Q=10x_1^2+x_2^2+x_3^2-6x_1x_2 \text{ to its diagonal forms}$ and determine its types. (06)

6

OR

- 5 (a) Prove that any given quadratic form can be transform to its normal form.
 - (b) Find a canonical expression of a given quadratic form Q(X).

i. $Q(x) = X_1^2 - 2X_2^2 - 27X_3^2 + 2X_1X_2 - 4X_1X_3 + 14X_2X_3$