Time: 2.5 hours Marks: 70

Q-1 Attempt following questions

14

- (a) Base values: 253 nm; 214 nm; 202 nm; 215 nm (other values are given as a supplementary tables)
 - Calculate Wavelength maximum for following four structures

- (b) Give principle of IR spectroscopy.
 - Give wavelength for Far IR, Mid IR and Near IR region. Explain 3N-6 equation for calculating IR vibration.
- (c) Define Microwave spectroscopy. Give classification of molecule and explain linear molecule with suitable example.

OR

- (a) What are Rayleigh scattering and Raman scattering? Explain principle of stokes and antistokes lines with suitable example.
- (b) Explain the IR spectrum of carbon dioxide.
- (c) Explain the effect of instrumental factors on deviation from Beer's law.

Q-2 Attempt following questions

14

- (a) Explain the ¹H NMR spectrum of 1-chloroprop-1-ene, Phenol and Aniline.
- (b) Draw schematic diagram of continuous wave method used for taking NMR of a sample and explain its working.

OR

- (a) Give principle of NMR spectroscopy. Explain chemical shift and show its importance. Write a short note on TMS.
- (b) What is coupling constant? Explain each type of coupling constant with suitable example in details.

Q-3 Attempt following questions

14

- (a) The species, AlH₃, gives rise to a complex spectrum centered at 329.48 mT with microwave radiation of frequency 9.235 GHz. Compute the g-value for AlH₃. Given: $g = h\nu / \mu_B$ B where $h = 6.626 \times 10^{-34} Js \nu = 9.235$ GHz, $\mu_B = 9.274' 10^{-24}$ J T⁻¹ and B = 329.48 mT
- (b) How will you calibrate ESR spectrum using Mn⁺² species. Calculate the ESR spectrum lines for AlH₃-, CH₃•, and H• species.
- (c) Draw cross section of klystron with proper labeling.

Q-3 Attempt following questions

14

- (a) Draw schematic diagram of RF-pulse method with proper labeling and explain its working in brief.
- (b) What is principle of ESR spectroscopy? Explain electron spin without any additional environment.
- (c) Give comparison of NMR and ESR spectroscopy.

14

Q-4 Attempt following questions

(a) Give an account of flame photometry with proper illustration.

(b) Write a short note on flame atomizers with proper illustration.

OR

- (a) Explain various interferences occurred in the atomic absorption spectroscopy.
- (b) Give relationship of flame photometry and atomic absorption spectroscopy and explain working of pre-mix burner in details.

Q-5 Attempt following questions

14

- (a) Draw schematic diagram of electron impact ionization and explain its working.
- (b) Draw schematic diagram of quadruple mass analyzer and explain its working.
- (c) Explain following terms with respect to mass spectrum: (i) homolytic cleavage (ii) heterolytic cleavage (iii) retro-Diels-Alder reaction (iv) α-cleavage of σ-bond rapture

OR

- (a) Draw schematic diagram of electron spray ionization and explain its working.
- (b) What is base peak in mass spectrum? Give suitable example for it with proper illustration.
- (c) How will you determine isotopes by using Mass spectrum?

268 INTRODUCTION TO INSTRUMENTAL ANALYSIS

Pable 9-4 The Woodward-Fieser rules for conjugated dienes

Add the value for each auxochrome to that of the chromophore in order to estimate the wavelength of the absorptive maximum. R represents an alkyl or H

Chromophore	Wavelength, nm
H ₂ C=CHCH=CH ₂ or heteroannular diene	214
Homoannular diene	253
Auxochrome	Wavelength, nm
Additional conjugated double bond	30
Exocyclic double bond	5
Alkyl	5
OCOCH ₃	0
O-Alkyl	6
Cl or Br	5
SR	30
NR ₁	60

Pable 9-5 Rules for predicting the wavelength of the absorptive maxima of α, β-unsaturated carbonyls

Add the value for each auxochrome to 215 nm for acyclic or six-membered rings

Auxochrome	Wavelength, nm
Alpha substituents:	
Alkyi	10
ОН	35
OCOCH ₃	6
O-Alkyl	35
CI	15
Br	25
Ring residue	10
Beta substituents:	
Alkyi	. 12
OH	30
OCOCH ₃	6
O-Alkyl	30
Cl	12
Br	30
N-(Alkyl) ₂	95
S-Alkyl	85
Ring residue	12
Conjugated double bond	30
Five-membered ring ketone	-10
Aldehydes	-5
Acids, esters	20

www.mkbuonline.com