OC+-2017

M.Sc. Physics Semester – 2 Examination Phys-C-202 - {Quantum Mechanics} Paper Code: 4657

Time: 2Hours 30Min MM: 70

Note: Answer all questions. Figures to the right indicate marks allotted. All symbols have their usual meaning.

1	a)	For simple harmonic oscillator define ladder operators a and a^{\dagger} . Derive	08
		energy eigenvalue spectrum, $E_n = (n + \frac{1}{2})\hbar\omega$ using a and a^{\dagger} .	
	b)	Define the followings.	04
		(i) Projection operator (ii) Unitary operator	
		(ii) Self-adjoint operator (iv) Degenerate state	
	c)	Write two properties of Hermitian operator.	02
		OR	
1	a)	What do you mean by A-representation? With usual notation, prove that any	08
		dynamical variable \hat{F} can be represented as matrix operator, and derive	
		$(\chi)_A = [F]_A(\psi)_A.$	
	b)	Prove that for any two abstract operators F and G , their product is written as	04
		$[FG]_A = [F]_A[G]_A$ in A-representation.	
	c)	Define Hilbert space and Configuration space.	02
2	a)	Derive simultaneous eigenvalue spectrum for J^2 and j_z .	08
	b)	What is the spin wave function for electron $(s = \frac{1}{2})$, if the spin component in	04
		the direction of unit vector $\hat{\boldsymbol{n}}$ has the value $\frac{1}{2}\hbar$?	
	c)	For Pauli's matrices prove the followings.	02
		(i) $s_{+}\beta = \hbar\alpha$ (ii) $\sigma_{+}^{2} = 0$	
		OR	
2	a)	Write note on addition of angular momenta.	07
	b)	If the components of any vector \vec{A} and \vec{B} commute with those of Pauli's	04
		matrix $\vec{\sigma}$, then prove that $(\vec{\sigma} \cdot \vec{A})(\vec{\sigma} \cdot \vec{B}) = (\vec{A} \cdot \vec{B}) + i\vec{\sigma}(\vec{A} \times \vec{B})$.	
	c)	Obtain matrix representation for J_+ when $j = 1$.	03
2	>	Using Rayleigh and Schrödinger perturbation theory for discrete part of	07
3	a)	energy eigen spectrum, derive expression for energy eigenvalue and eigen	0,
		function corrected upto first order in perturbation.	
	1. \	For first excited level of H-atom, obtain equation for first-order correction to	07
	b)		0,
		energy, $W^{(1)}$, when H-atom is placed in uniform electric field of intensity \mathcal{E} .	

		Wave functions are given as follows.	
	u	$ u_{210}\rangle = \left(\frac{1}{32\pi a_0}\right)^{\frac{1}{2}} \left(2 - \frac{r}{a_0}\right) e^{-\frac{r}{2a_0}}, \qquad u_{21-1}\rangle = \left(\frac{1}{32\pi a_0}\right)^{\frac{1}{2}} \frac{r}{a_0} e^{-\frac{r}{2a_0}} \sin\theta \ e^{-i\varphi},$	
		$ u_{210}\rangle = \left(\frac{1}{32\pi a_0}\right)^{\frac{1}{2}} \frac{r}{a_0} e^{-\frac{r}{2a_0}} \cos\theta, \qquad u_{211}\rangle = -\left(\frac{1}{32\pi a_0}\right)^{\frac{1}{2}} \frac{r}{a_0} e^{-\frac{r}{2a_0}} \sin\theta e^{i\varphi}.$	
		$(32\pi a_0) a_0$ $(52\pi u_0) u_0$	
3	a)	For constant time dependent perturbation, derive an expression for transition	08
5	(a)	amplitude $a_f^{(1)}(t)$. For this case, plot and interpret the graph of transition	
		-	
	1	probability versus t^2 . Calculate the first order correction to the ground state energy of one	06
	b)	dimensional anharmonic oscillator of mass m and angular frequency ω	
		subjected to a potential $V(x) = \frac{1}{2}m\omega^2x^2 + bx^4$. The ground state of an	
		oscillator is given as $\psi_0^0 = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} exp\left(-\frac{m\omega x^2}{2\hbar}\right)$.	
4	a)	Optimize the trial wave function $e^{-\alpha r}$ for the ground state of H-atom taking α	07
		as variation parameter. Derive ground state energy for H-atom.	0.7
	b)	Estimate the ground state energy of one dimensional simple harmonic	07
		oscillator using Guassian trial function.	ļ.—
		OR	00
4	(a)	Why WKB method is also known as semi classical method. Derive	08
	<u> </u>	asymptotic solution of one dimensional Schrödinger equation.	06
	b)	Outline the variation method used for obtaining approximate value of ground	00
		state energy of a system. Prove that it gives upper bound to ground state	
	<u> </u>	energy.	ļ
5		What is partial wave analysis? Starting with radial wave equation, viz;	08
3	a)		
		$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dR_l(r)}{dr}\right) + \frac{2m}{\hbar^2}\left[E - V(r) - \frac{l(l+1)}{2mr^2}\right]R_l(r) = 0, \text{ derive expression for}$	
		scattering amplitude, $f(\theta) = \frac{1}{k} \sum_{l=0}^{\infty} (2l+1) P_l(\cos\theta) e^{i\delta_l} \sin\delta_l$, equation.	
	b)	Define Green's function. In terms of Green's function, derive an expression	06
		for asymptotic form for total wave function.	
		OR	
5	a)	What is Born approximation? Give difference between Born approximation	08
		and partial wave analysis. Within the Born approximation derive an	
		expression for scattering amplitude.	
	b)	Derive an expression $\sin \delta_l = -k \int_{r=0}^{\infty} U(r) j_l^2(kr) r dr$, showing relation	06
		between phase shift and potential.	