M.Sc. Statistics(Sem. -II) EXAMINATION - OG-NOV- 2017 Distribution Theory: PARER 2, 376 (ode-2753)

TIME	E: Tourco Hours. TOTAL MARKS:	70			
Note: (i) All Questions are Compulsory					
	(ii) All Full Questions carry equal marks.				
1. ((a) Let $f(x,y) = \begin{cases} 2, & \text{if } 0 \le X \le Y \le 1 \\ 0, & \text{elsewhere} \end{cases}$ then derive (i) Marginal density of x. (ii) Marginal density of y. (iii) Conditional density of x given y. (iv) $E(X Y = y)$	8			
((IV) E(X Y = y) b) Let X ~ Poisson (λ) then derive characteristic function of X. Hence obtain its mean and variance. 	6			
1. (OR a) Let the joint pdf of X and Y be given by: $f_{x,y}(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}} exp\left[-\frac{x^2-2pxy+y^2}{2(1-\rho^2)}\right] \text{ where } \rho < 1. \text{ Find}$	6			
(1	the marginal pdf of X and Y Let the joint pdf be given by $f(x,y) = \lambda_1 \lambda_2 e^{-(\lambda_1 x + \lambda_2 y)}$	8			
	$0 < x < \infty$, $0 < y < \infty$ obtain the marginal density of X				
	and Y also obtain the joint distribution function of X and				
	Y.Are X and Y independent?				
		8			
2. (a	Define power series distribution. Show that first two cumulants uniquely determine the power series distribution.	o			
(b	Define NTA distributions. Define probability generating functions of itHence obtain its pdf	6			

OR

2.	(a)	± • •	8
	(b)	generating functions of both distributions. Derive recurrence relation for moments in the case Poisson-Poisson distribution.	e 6 1
3.		State and prove Fisher-Cochran Theorem.	8
	(b)	In usual notation, prove following result G3(z)=G1(G2(z)	
		OR	
3	(a)	Define non-central chi-square random variable and obtain its probability distribution.	8
	(b)	Define singular and non-singular multinomial distribution.	6
		Find mean, variance – covariance matrix of Multinomial Distribution	
4.	(a)	State the p.d.f of a Weibull distribution. If X has	6
	(b)	W(X, σ , p)then derive the distribution of x p . Derive joint p.d.f. of rth & sth order statistics.	8
		OR	
4.	(a)	Derive Standard Error of r-th sample moment stating the necessary condition.	8
•	(b)	Derive p.d.f. of rth order statistics.	6
5.	(a)	State and prove two Property of non-central & distribution	8
	(b)	Let $X \sim N(\mu, \sigma^2)$ and $Y \sim N\sigma^2 X^2(n)$ be two independent	6
		rv's. then derive the p.d.f. of $T=X/(Y/n)^{1/2}$. Give the name	
		of the Statistic.	
5	(a)	OR Derive the pdf of the rth order statistics based on the	8
		random sample of size n from exponential distribution with	
		meanθ.	

(b) Write a short note on non-central F-distribution.

6