Code = 2934 OC+ = 2047.

M.SC. (Sem II) Examination Statistics: Paper – VI (Testing of Hypothesis) (Inference - II)

Time: 2 Hours]

[Total Marks : 70

(a): Explain randomized tests. State Neyman-Pearson lemma and prove the necessity part the theorem for randomized test.

(b)) Derive size $-\alpha$ UMP test to test H: $p = p_0$ against K: $p \le p_0$ based on a random

sample of size n taken from Bernoulli distribution with parameter p. Also obtain power function of the test

- (a) Giving suitable illustration explain the terms: 1.
 - (i) Null hypothesis (ii) Simple hypothesis (iii) Composite hypothesis
 - (iv) Non-Randomized test (v) Randomized test.
 - (b) Show that the test given by N.P. lemma is always unbiased
- (a) Giving suitable illustration explain the terms (i) Parametric tests and Non- parametric tests (ii) size of the test and level of the test.

 - (iii) Most powerful test (iv) Uniformly most powerful (UMP) Tests,
 - (b) Let $X\sim N(\mu,1)$. Test the null hypothesis H: $\mu=6$ v/s K: $\mu=7$. Two actions are given.

A-1: Accept H if X<7

A-2: Accept K if X≥7.

Find probability of wrong decision w.r.t. both the actions.

- (a) Discuss the Uniformly Most Powerful test and comment on its 2. existence. Show that for a family $C(\theta)h(x)$ $Exp(Q(\theta) T(x))$ there exists a UMP test for testing H0: $\theta \le \theta 0$ against H1: $\theta > \theta 0$, where $Q(\theta)$ is a
 - (b)State and prove Generalized Neyman-Pearson lemma.
- 3. (a) Let $X \sim f(x, \theta) = e^{-(x-\theta)}$; $x \ge \theta$ Test H: $\theta \le \theta 0$ Vs K: $\theta > \theta 0$ derive UMP test of size α on the basis of a random sample of size n from $f(x,\theta)$.
 - (b) Derive size $-\alpha$ UMP test to test H: $\theta \le \theta 0$ against K: $\theta > \theta 0$ based on a random sample of size n taken from uniform distribution with parameter θ . Also obtain power function of the test.

OR

- (a) Explain difference between parametric and non-parametric test. give the 3. advantage of non-parametric tests.
 - Explain (i) (ii) unbiased test (iii), locally most powerful test (iv) Monotone likelihood ratio
- (a) Explain wilcoxon signed Rank test with illustration 4.
 - (b) Let X_1, X_2, \dots, X_n be a random sample of size n from an exponential distribution with pdf.

$$F(x,\theta) = \frac{1}{\theta}e^{-x/\theta}, x > 0, \theta > 0$$

,Where, $0<\theta<\infty.$ Define the UMP test of size α for testing $H_0:\theta \le \theta_0$ vs k: $\theta > \theta_0$. Also find the power function of the test.

OR

- 4. (a) State the properties of NP lemma.
- (b) Let $X \sim P(\lambda)$, $\lambda > 0$. Define $\phi(x) = e^{-x}$, $x \in \mathcal{X} = \{0, 1, 2, ...\}$ & $H : \lambda = \lambda_0 \text{ Vs } K$: $\lambda = \lambda_1$ then what is the size & power of the test?
- 5. (a). (a). Describe kolmogrove smirnov test.
 - (b) Describe Mann Whitney -U test.

OR

(a) Derive SPRT for Bernoulli distribution with parameter to test H: $p = p_0$ 5. against

 $K: p = p_1 = 1 - p_0$. Obtain its OC and ASN functions

(b) (a) Show that the SPRT terminates with probability one