Navomber-2015

M. Sc. (Sem. Ill) Examination

Statistics: Paper - IX

(Multivariate Analysis) code: 3574

Time: 2.30 Hours]

[Total Marks: 70

- (a) Let $x_{\sim_1}, x_{\sim_2}, \dots, x_{\sim_n}$ be a simple random sample of size n from p-variate normal distribution $N_p(\mu_{\sim}, \Sigma)$. Obtain maximum likelihood estimators of μ_{\sim}, Σ . 07
 - (b) Define singular and non-singular multivariate normal distribution. Let $\underline{x_1}, \underline{x_2}$

$$\underline{x_3}$$
 are iid $N_3(\mu, \Sigma)$ $\mu' = (1,2,4) \Sigma = \begin{bmatrix} 2 & .5 & 4 \\ .5 & 3 & .2 \\ 4 & .2 & .6 \end{bmatrix}$

and if $\underline{y_1} = \underline{x_1} + \underline{x_2}$ and $\underline{y_2} = \underline{x_2} + \underline{x_3}$ obtain the distribution of $\underline{y_1}$ and $\underline{y_2}$. 07

(a) Let
$${}^{x}_{\sim}N_{p}$$
 (μ_{\sim}, Σ) and x_{r}, μ_{\sim} and Σ are partitioned as:
$$x_{\sim} = \begin{pmatrix} x_{-1} \\ x_{-2} \end{pmatrix}_{S'}^{r} \qquad \mu_{\sim} = \begin{pmatrix} \mu_{-1} \\ \mu_{-2} \end{pmatrix}_{S'}^{r} \qquad \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}_{S}^{r}$$

with r+s=p. Show that $x_{\sim_1} - \Sigma_{12}\Sigma_{22}^{-1}x_{\sim_2}$ and x_{\sim_2} are independently distributed. Hence obtain the conditional distribution of x_{\sim_1} given $x_{\sim_2} = x_{\sim_2}$ 07

(b) Let ${}_{\sim}^{x}r$ $(r=1,2,\ldots, k)$ be independently distributed as $N_{p}({}_{\sim}^{\mu}r, \Sigma_{r})$, then show that for fixed matrices A_r: mxp;

$$\sum_{r=1}^{k} A_r \overset{x}{\sim} r \sim Np \left(\sum_{r=1}^{k} A_r \overset{\mu}{\sim} r, \qquad \sum_{r=1}^{k} A_r \Sigma_r \overset{A'}{r'} \right).$$

Hence or otherwise obtain the distribution of sample mean vector \overline{x}_{\sim} .

- (a) If X (with p components) be distributed according to $N_p(\mu, \Sigma)$. Then derive 2 the pdf of Y=CX, C is non-singular matrix. 07
- (b) Obtain characteristic function of non-singular multivariate normal distribution. 07

OR

2 Define multiple correlation coefficient and partial correlation coefficients. Given $X' = (x_1, x_2, x_3)$ has tri-variate normal distribution with mean vector $\underline{0}$ and covariance matrix as that $\Sigma = \begin{pmatrix} 1 & \rho & \rho^2 \\ \rho & 1 & \rho \\ \rho^2 & \rho & 1 \end{pmatrix}$ find the multiple correlation coefficient of x_1 on x_2 and x_3 . What condition

must be satisfied by ρ ?

(b) (1)Let $X \sim N_3(\mu, \Sigma)$ and $\Sigma = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 2 \end{bmatrix}$ Obtain (i)partial correlation the multiple correlation. the multiple correlastion coefficient of x_1 on x_2 and x_3 .

(2) If $X \sim N_3(\mu, \Sigma)$, $\mu' = (6,1,4)$ and $\Sigma = \begin{bmatrix} 1/2 & 1/4 & 1 \\ 1/4 & 1/2 & 3/4 \\ 1 & 3/4 & 5/2 \end{bmatrix}$ Obtain $E(X_1/X_2)$

and $V(X_1/X_2)$. (Σ = Variance-covariance Metrics, $X_2 = (X_2, X_3)$

(a) Let $x_{\sim_1}, x_{\sim_2}, \dots, x_{\sim_n}$ be n iid observations from $N_p(o_{\sim}, I_p)$ population. 3 Obtain the distribution of the $p \times p$ symmetric matrix $V = \sum_{i=0}^{n} x_{\sim i}, x'_{\sim i}$ 07

	(0)	Let $V_1 \sim W_p$ ($V_1 n_1 \Sigma$), and $V_2 \sim W_p$ ($V_2 n_2 \Sigma$) be independently	y distrib	uted.
		Obtain distribution of $V_1 + V_2$.	07	
		OR	·	
3	(a)	Let $X_i \sim N_2(0, \varepsilon)$, i=1,2,3 and $\varepsilon = \begin{bmatrix} 1 & 2 \\ 2 & 9 \end{bmatrix}$ Then obtain	ain (i)	W=
Σ	X_iX_i'	(ii) Distribution of W. (iii) Write pdf of W (4)	,	
	(b)	Define canonical correlation coefficients and canonical variates. In usual notation show the canonical correlations are solution of the determinant leaves and the determinant leaves are solution.		
		show the canonical correlations are solution of the determinental equat $\begin{vmatrix} -\lambda \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & -\lambda \Sigma_{22} \end{vmatrix} = 0$	ion (10)	
4	(a)	Define Hotelling's T^2 statistic and derive its null sampling distribution.	0	5°7
	(b)	If $\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$ where $\rho > 0$; find the first principal component associated with Σ and find the percentage of total variance explained by it.	C th)7
		OR		
4	(a)	In usual notation prove that		
		$R^{2}_{1.23} = \frac{r^{2}_{12} + r^{2}_{13} - 2r_{13}r_{23}r_{12}}{1 - r^{2}_{23}}$	07	
	(b)	State and prove two properties of wishart distribution.	07	
5	(a) I	Define multiple correlation coefficient and partial correlation		

coefficients. Given that

 $X' = (x_1, x_2, x_3)$ has tri-variate normal distribution which mean vector $\underline{0}$ and covariance matrix as $\Sigma = \begin{pmatrix} 1 & \rho & \rho^2 \\ \rho & 1 & \rho \\ \rho^2 & \rho & 1 \end{pmatrix}$ find the multiple correlation coefficient of x₁ on x₂ and x₃. What conditi 07

must be satisfied by ρ ?

State and prove invariant property of Hotelling's T^2 07

OR

Let $V_1 \sim W_p$ $(V_1 |n_1| \Sigma), n \ge p |\Sigma| > 0$ and let

14

$$V\begin{pmatrix}V_{11}&V_{12}\V_{21}&V_{22}\ r\end{pmatrix}_S;\qquad \Sigma\begin{pmatrix}\Sigma_{11}&\Sigma_{12}\\Sigma_{21}&\Sigma_{22}\ r\end{pmatrix}_S;\qquad r+s=p$$
 that,

Show that,

 $V_{11.2}$ and $(V_{12},\,V_{22})$ are independently distributed

iii.
$$(V_{12} / V_{22}) \sim N_{r,s} (\beta V_{22}, Y_{11.2}, V_{22})$$

ii. $V_{11.2} \sim W_r (\Sigma_{11.2}, n-s)$ iii. $(V_{12} / V_{22}) \sim N_{r,s} (\beta V_{22}, \Sigma_{11.2}, V_{22})$ iv. $V_{22} \sim W_s (\Sigma_{22}, n)$ Where, $V_{11.2} = V_{11} - V_{12} V_{22}^{-1} V_{12}^1$, $\Sigma_{11.2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{12}^1$ and $\beta = \Sigma_{12} \Sigma_{22}^{-1}$