M. Sc. Semester- IV (MATHEMATICS)

[Code: 3474]

06/ 2016

Paper 13: Functional Analysis-II

Marks:70

Q-1

- (a) Define the term Dual Basis. [4]
- (b) Let X be a normed space over K. Let $\{x_n\}$ be a sequence in X such that $x_n \stackrel{\text{w}}{\to} x$ in X [10] and $\{k_n\}$ be a sequence in K such that $k_n \to k$ in K. Prove that $k_n x_n \stackrel{\text{w}}{\to} kx$.

OR

Q-1

- (a) If $\{x_n\}$ is a sequence in a normed space X such that $x_n \stackrel{\text{if}}{\to} x$ in X, then show that $\{x_n\}$ is a bounded sequence in X.
 - (b) Give an example to show that $x_n \stackrel{w}{\to} x$ in X does not imply $x_n \to x$ in X. [6]

Q-2

- (a) Let T be a normal operator on H. Prove: x is an eigen vector of T with eigenvalue λ [10] if and only if x is an eigen vector of T* with eigenvalue $\tilde{\lambda}$.
 - (b) State the Spectral Theorem.

[4]

OR

Q-2

Let f be a continuous real-valued function defined on [a, b] and $\varepsilon > 0$ be given. Prove that there exist a polynomial P with the real coefficient such that $|f(x) - P(x)| < \varepsilon$, $\forall x \in [a, b]$.

Q-3

(a) Define a Banach algebra.

[4]

(b) Let A denote a complex Banach algebra with identity, let $S = A \setminus G$ denote the set of [10] all singular elements of A, and let Z denote the set of all topological divisors of zero. Prove that Z is a subset of S.

OR

Q-3

- (a) Define the Banach algebra $L_1(G)$, where G is a finite group. [4]
- (b) Let A denote a complex Banach algebra with identity and G denote the set of all [10] regular elements of A. Show that G is an open set in A.

Q-4	(a) (b)	Let A denote a complex Banach algebra with identity and $x \in A$. Prove that $\sigma(x) \neq \varphi$. Let A be a unital Banach algebra, $n \in N$, and $x \in A$. Prove that $\sigma(x^n) = \sigma(x)^n$.	[8] [6]
		OK	
Q-4	(a) (b)	Let A denote complex Banach algebra with identity 1 and let R be a Radical in A. If $x \in A$ and $r \in R$ that such $1-xr$ is regular, then show that $1-rx$ is regular. Define the Maximal Ideal Space of a commutative Banach algebra.	[10] [4]
Q-5	(a) (b)	Let x be a normal element in a B^* -algebra A . Then show that $ x^2 = x ^2$. Prove that the maximal ideal space M is a compact Hausdorff space.	[6] [8]
		OR	
Q-5		State and prove the Gelfand Neumark Theorem.	[14]