APARL-2017

M-Sc. Semester - 4

Nanoelectronics and Nanomagnetism Paper code: 10306

[Phys-N402]

Q.1 [a] Write in detail, 'Quantum and classical regimes of electron transport'.	[10]
[b]Explain and calculate de Broglie wavelength for electron in matter.	[04]
OR	
Q.1 [a] Explain concept of length scale for electronic transport in nanomaterial.	[06]
[b] Define Coherence length.	[02]
[c] Define following terms: Mesoscopic transport, Ballistic transport, Diffusive transport	[06]
Q.2 [a] Define density functional theory and its applications.	[06]
[b] Explain briefly computational modelling.	[04]
[c] What do you understand by molecular dynamics simulations?	[04]
OR	
Q.2 [a] Define ensembles? Differentiate between microcanonical ensembles, canonical ensem	
and grand canonical ensembles.	[07]
[b] Define curve fitting and explain briefly the least square fitting method.	[07]
Q.3 [a] Explain the Mössbauer effect in detail.	[10]
[b] Explain isomer shift with proper diagram.	[04]
OR	
Q.3 [a] Explain in brief: (1) Notice I line width (2) Departure broadening (2) Recail an every less.	F0.61
(1) Natural line width (2) Doppler broadening (3) Recoil energy loss	[06]
[b] Explain Magnetic dipole interaction: magnetic splitting.[c] Explain Electric quadrupole interaction: Quadrupole splitting.	[04] [04]
[o] Explain Electric quadrapole interaction. Quadrapole spinting.	[0,1]
Q.4 [a] Derive equation for magnetic force and torque for dipolar matter.	[80]
[b] Magnetic relaxation in ferromagnetic fluids.	[06]
OR	
Q.4 [a] Stability requirements of magnetic materials.	[10]
[b] Discuss effects of particle size on coercivity of ferromagnetic materials	
and effects on its magnetic properties.	[04]

Q.5 [a] Give basic understanding, applications and challenges of ER fluids. [b] Write down preparation steps of MR fluids.	[10] [04]
OR	
Q.5 [a] Discuss forces relevant to the magneto-rheological (MR) fluids.	[80]
[b] Explain structure of ER fluids:	[06]
a) Fibrillation model	
h) Electric double layer model	