B. com. (Homouss) Som. I

: नोंध :

Sub. Codo. 21327

7

- q. દરેક પ્રશ્નનો [a] અથવા [a(i)] અને [a(ii)] જ લખવાના રહેશે.
- ૨. પ્રશ્ન : ૧[a] અથવા ૧ $[a(\mathbf{i})]$ અને ૧ $[a(\mathbf{ii})]$ તથા ૨[a] અથવા ૨ $[a(\mathbf{i})]$ અને ૨ $[a(\mathbf{ii})]$ ના 14 માર્કસ ના બદલે ૧૮ માર્કસ ૨હેશે.
- 3. પ્રશ્ન : 3[a] અથવા 3[a(i)] અને 3[a(ii)] તથા $\sqrt[3]{a}$ અથવા $\sqrt[3]{a}$ અને $\sqrt[3]{a}$ ના $\sqrt[3]{a}$ માર્કસ ના બદલે ૧७ માર્કસ રહેશે.
- ૪. દરેક પ્રશ્નનો પ્રશ્ન નં ૧(b), પ્રશ્ન નં ૨(b), પ્રશ્ન નં ૩(b) તથા પ્રશ્ન નં ૪(b) (ટુંકા પ્રશ્નો) વિદ્યાર્થીએ લખવાના નથી.
 - Explain the simplex method for solving the Linear Programming Problem (LPP). 14 (a) 1. Solve the following LPP graphically.

Min
$$Z = 4x_1 + x_2$$
 subject to,
 $3x_1 + x_2 \ge 30$
 $4x_1 + x_2 \le 60$
 $x_1 + 2x_2 \ge 30$
 $x_1, x_2 \ge 0$

OR

(i) Solve the following LPP by simplex method.

 $Max Z = 4x_1 + 10x_2$ subject to, $2x_1 + x_2 \le 50$ $2x_1 + 5x_2 \le 100$ $2 x_1 + 3x_2 \le 90$ $x_1, x_2 \ge 0$

- (ii) State the mathematical form of Linear Programming Problem (LPP). Explain the graphical method for solving the LPP. 4
- Answer in short. (attempt any four) 1. (b)

(1) Explain: Linear constraint

- (2) Explain: Objective function
- (3) Explain: Feasible solution
- (4) What is optimal solution?
- (5) What is LPP?
- (6) What is a basic solution?
- Explain optimality test for solving transportation problem. Find optimal feasible 14 solution for the following transportation problem.

Factory		Supply			
	W_1	W_2	W_3	W_4	
F_1	19	30	50	10	7
F ₂	70	30	40	60	9
F ₃	40	8	70	20	18
Demand	5	8	7	14	34

OR

2. (a) (i) Give assignment in the following problem so as to minimize the distance travelled.

Cities	Depots						
	a	b	c	d	e		
A	160	130	175	190	200		
В	135	120	130	160	175		
$\overline{\mathbf{C}}$	140	110	155	170	185		
D	50	50	80	80	110_		
E	55	35	70	80	105		

(a) (ii) Determine an initial basic feasible solution to the following transportation problem using (a) LCM method (b) Vogel's method

Origins		Destination				
	A	В	C	D	E	Supply
P	5	7	6	8	9	20
Q	9	8	10	4	11	35
R	10	12	9	7	8	40
S	6	6	7	8	8	15
Demand	15	10	20	30	35	110

- (b) Answer in short. (attempt any four)
 - (1) What is transportation problem?
 - (2) What is assignment problem?
 - (3) What is the main objective of transportation problem?
 - (4) At what stage in the Hungarian method for solving an assignment problem, we can expect the optimum solution?

4

7

7

- (5) Explain balanced transportation problem.
- (6) Solve the following assignment problem.

Jobs						
	Machines					
	M _I	M_2	M_3			
J_1	20	27	30			
J ₂	10	18	16			
J_3	14	16	18			

3. (a) State the procedure for determining the optimum sequence for n jobs on 2 14 machines.

Six jobs go first over machine A and then over machine B. Processing times in hours are given as:

Job	J_1	J ₂	J ₃	J_4	J_5	J_6
Machine A	1	3	8	5	6	3
Machine B	5	6	3	2	2	10

Find the optimum sequence in which jobs should be processed.

OR

3. (a) (i) Explain: The modified dominance property. Solve the following game:

Player B
$$\begin{bmatrix}
3 & 2 & 4 & 0 \\
3 & 4 & 2 & 4 \\
4 & 2 & 4 & 0 \\
0 & 4 & 0 & 8
\end{bmatrix}$$

(a) (ii) How will you determine a saddle point? Solve the following game:

$$\begin{bmatrix} 9 & 3 & 1 & 8 & 0 \\ 6 & 5 & 4 & 6 & 7 \\ 2 & 4 & 3 & 3 & 8 \\ 5 & 6 & 2 & 2 & 1 \end{bmatrix}$$

3.	(b)	Answer in short. (attempt any three)	3
		(1) What is sequencing?	
		(2) What is total elapsed time?	
		(3) What is idle time on a machine?	
		(4) What is pure strategy?	
		(5) What is optimum strategy?	
4.	(a)	State the uses of Z-transformation.	14
		The correlation coefficient of a random sample of size 27 drawn from a bivariate	1 1
		normal population is 0.42. Test the hypotheses (i) H_0 : $\rho = 0$ and (ii) H_0 : $\rho = 0.6$	
		OR	
4.	(a)	(i) State the properties and uses of t-statistic.	7
	(a)	(ii) For filling each bottle with 170 tablets of a particular medicine, an automatic machine was installed. From the production, a sample of 9 bottles was taken. The	7
		numbers of tablets found in these 9 bottles are as follows: 168, 164, 166, 167, 168,	
		169, 170, 170, and 171. Test whether the machine has been installed properly or	
		not?	
	(b)	Answer in short. (attempt any three)	•
	(~)	(1) Define student's t-statistic.	3
		(2) Define Z-transformation.	
		(3) What is degrees of freedom?	
		(4) What is point estimation?	
		(5) What is interval estimation?	
		(5) What is interval estimation:	