B. Sc Semester-III Mathematics Examination March/April-2016 Advanced Calculus

Paper No: M-301

Total Marks:70

Time: 2:30 hours Paper code: 3803

Instr	ructions:	
4 - 3	All questions are compulsory. Each question carry equal marks.	
Que-1.	 (a) Find asymptotes parallel to coordinate axis of the curve x²y - 3x² - 5xy + 6y + 2 = 0. (b) Let f: ℝ → ℝ be a differentiable function. If f'(x) > 0 for all x ∈ ℝ, then prove that f is an increasing function. 	[7] [7]
Que-1.	 (a) Show that the parabola y² = 4ax has no asymptotes. (b) Examine the concavity of the function f(x) = 5x³ + 2x² - 3x and find its point(s) of inflexion. 	[7] [7]
Que-2.	(a) State and prove duplication formula. (b) Prove that $\int_{0}^{\infty} \sqrt{x}e^{-3\sqrt{x}}dx = \frac{315}{16}\sqrt{\pi}.$ or	[7] [7]
Que-2.	 (a) State and prove the relation between beta and gamma function. (b) Define beta function. In usual notation prove that (i) β(p,q) = β(q,p), (ii) β(p,q) = ∫₀[∞] (y^{p-1}/((1+y))^{p+q}) dy. 	[7] [7]
Que-3.	(a) Examine the continuity of the function $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$ at the point $(0,0)$. (b) If $u = \sin^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{y}{x}\right)$, then find the value of $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$.	[7] [7]
Que-3.	(a) If $f(x,y) = \frac{x+y}{2x-y}$, then show that $\lim_{x\to 0} [\lim_{y\to 0} f(x,y)] \neq \lim_{y\to 0} [\lim_{x\to 0} f(x,y)]$. (b) If $u = \log(x^3 + y^3 + z^3 - 3xyz)$, then show that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = -\frac{9}{(x+y+z)^2}$.	[7] [7]
Que-4.	(a) If $u(x, y, z) = \frac{1}{x^2 + y^2 + z^2}$, then find the value of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$. (b) Expand $e^x \sin y$ in powers of x and y near the point $(0, 0)$.	[7] [7]
Que-4.	(a) If $x + y + z = u$, $y + z = uv$ and $z = uvw$, then show that $\frac{\partial(x,y,z)}{\partial(u,v,w)} = u^2v$. (b) Obtain Taylor's expansion of $\tan^{-1}\left(\frac{y}{x}\right)$ about $(1,1)$ upto second degree terms.	[7]
Que-5.	(a) State and prove Taylor's theorem.	[7]
Que-5.	(b) If u and v are functions of x and y , then prove that $\frac{\partial(u,v)}{\partial(x,y)} \cdot \frac{\partial(x,y)}{\partial(u,v)} = 1$.	[7]
ચુલ≎'ઇ.	 (a) State and prove Euler's theorem. (b) Find the extreme values of function x³ + y³ - 3axy. 	[7] [7]