T.Y.B.Sc. EXAMINATION: MARCH/APRIL 2017

CODE NO: 8961 ABSTRACT ALGEBRA PAPER NO.:M-301 **TOTAL MARKS:100** INSTRUCTIONS(1)ALL QUESTIONS ARE COMPULSORY. TIME:3 HOURS (2) EACH QUESTION CARRY EQUAL MARKS [7] State and prove that Lagrange's theorem for finite group. Q.1 Α [7] $G = \{1, 2, 3, 4, 5, 6\}$ prove that (G, \cdot_7) is a commutative group. В [6] For $\sigma \in S_7$, σ = (1 3 5 7)find σ^{-1} and O(σ). С [7] State and prove cancellation laws in group (G,*) Α Q.1 [7] Prove that (Z_7 , $+_7$) is commutative group. В [6] In a group G for a , $b \in G$ if $a^5 = e$, $aba^{-1} = b^2$ then prove that O(a) = 31С [7] N is normal subgroup of group G then prove that $N_a N_b = N_{ab}$ Q.2 Α G is cyclic group of order 24 generated by a and H = < $a^6>$ obtain factor group G/H of H in G. [7] В [6] Prove that fourth root of unity is acyclic group with respect to multiplication. С OR [7] State and prove that Fundamental theorem of homomorphism. Q.2 Α If $f:G\to G'$ is an isomorphism and if H is normal subgroup of G then f(H) is normal subgroup of G'. [7] В [6] Obtain all cyclic subgroup of ($\rm Z_{12}$, $+_{12})$ and its lattice diagram. C [7] Prove that (\mathbb{Z}_7 , $+_7$, \cdot_7) is a field. Q.3 Α $(R, +, \cdot)$ is a ring and S is non empty subset of R. S is sub-ring of ring R if and only if $a - b \in S$ and $a \cdot b$ [7] В $\in S, \forall a, b \in S$. Show that the characteristics of $% \left(1\right) =\left(1\right) +\left(1\right) =\left(1\right) +\left(1\right) +\left(1\right) =\left(1\right) +\left(1\right) +\left(1\right) =\left(1\right) +\left(1\right) +\left$ [6] С [7] Define: Boolean ring and prove that it is commutative ring. Q.3 Α (R , + , ·) is a ring and S = { m + n $\sqrt[3]{2}$ + $p\sqrt[3]{4}$ / m, n \in Z } prove that S is a sub-ring of ring R. [7] В [6] n is a positive integer and m is a non-zero element of (Z_n , $+_n$, \cdot_n) C [7] Prove: a commutative ring R with unity is a field if it has no proper ideal. Q.4 Α Let R be a commutative ring and let $a \in R$. prove that the $I = \{ x \in R / ax = 0 \}$ is an ideal. [7] В [6] Prove: an ideal in PID is maximal if and only if p is an irreducible. C [7] Prove that field has no proper ideal. Q.4 Α [6] State and prove Fermat's theorem. В Find all principal ideals and maximal ideals of ring ($Z_{12},\,+_{12},\,\,\cdot_{12}$) [7] C Prove that the degree of product of two non-zero polynomials is equal to sum of their degree. [7] Q.5 Α. [7] State and prove factor theorem for polynomial f(x) in F[x]. В [6] Find $(i + j)(1 + i + j - k)^{-1}$. C

State and prove division algorithm for polynomials in F[x].

Prove that $f(x) = x^3 + 3x + 2$ is irreducible over $z_5[x]$.

 $g = (1, -4, 2, -3, 0, 0, \dots).$

Find sum and product for polynomials $f = (2, 1, -2, -3, 0, 4, 0, 0, \dots)$ and

Q.5

В

С

[7]

[7]

[6]