T.Y.B.Sc. EXAMINATION: OCt - 2017

PAPER NO.:M-301 TIME:3 HOURS

ABSTRACT ALGEBRA INSTRUCTIONS(1)ALL QUESTIONS ARE COMPULSORY. (2)EACH QUESTION CARRY EQUAL MARKS

CODE NO: 8961 TOTAL MARKS:100

		(2)LACH QUESTION CARRY EQUAL MARKS	
Q.1	Α	In a group G, G is a commutative group if and only if $(ab)^{-1} = a^{-1}b^{-1} \forall a,b \in G$.	(-1)
	В	G is a group and $a \in G$ is fixed element $H = \{x \in G \mid xa = ax\}$ prove that $H \le G$.	[7]
	C	For $\sigma \in S_8$, $\sigma = (1 \ 3 \ 7 \ 8)$ find σ^{-1} and $O(\sigma)$.	[7]
		OR	[6]
Q.1	Α	State and prove that necessary and sufficient condition for non empty subset of group is to be a	[7]
		subgroup.	171
	B C	State and prove that Langrange's theorem for finite group.	[7]
	Ĺ	In a group G for a, $b \in G$ if $O(b) = 4$, $aba^{-1} = b^2$ and if $O(a)$ is an odd number then find $O(a)$.	[6]
Q.2	Α	G is a group and g \in G is fixed element. prove that $i_g: G \to G$, $i_g(x) = gxg^{-1}$ is an isomorphism.	[7]
	В	(G, +) = (Z, +) and $(H, +) = (5Z, +)$ obtain factor group G/H of H in G.	[7]
	C	Prove that intersection of two normal subgroups of group G is normal subgroup.	[6]
		OR	[0]
Q.2	Α	State and prove cayle's theorem.	[7]
	В	G is cyclic group of order 18 generated by a and $H = \langle a^3 \rangle$ obtain factor group G/H of H in G.	[7]
	С	$G=S_3$ and $H=\{\rho_0$, $\rho_1,\rho_2\}$ prove that H is a normal subgroup of G.	[6]
			[0]
Q.3	Α	Prove that (Z_5 , $+_5$, \cdot_5) is a field.	[7]
	В	Define: Boolean ring and prove that it is commutative ring.	
	C	Prove that every field is an integral domain.	[7]
		OR	[6]
Q.3	Α	Prove that finite integral domain is a field.	[7]
	В	Prove that $(Z_7, +_7, \cdot_7)$ is a commutative ring with unity.	
	С	The cancellation laws hold in ring R if and only if R has no zero divisors.	[7]
			[6]
Q.4	Α	Prove every PID is a UFD.	(7)
	В	Using Fermat's theorem, prove that $n^{37}-n$ is divisible by 19 and also find reminder when 13^{47} is	[7] [7]
		divided by 19.	1/1
	C	Prove : an ideal in PID is maximal if and only if p is an irreducible.	[6]
		OR	[0]
Q.4	Α	R is commutative ring with unity. An ideal M of R is maximal if and only if R/M is a field.	[7]
	В		1.,
	c	Using Euler's theorem, obtain reminder when 7^{1000} is divided by 24.	[7]
	•	$\emptyset: \mathbb{R} \to R'$ is isomorphism if \mathbb{R} is an ideal of \mathbb{R} then $\emptyset(I)$ is an ideal of \mathbb{R}' .	[6]
Q.5	Α	State and prove division algorithm for polynomials in F[x].	r=3
	В	For an integral domain D, prove that D[x] is also an integral domain with respect to the binary	[7]
		operations of addition and multiplication of polynomial.	[7]
	С	Any ideal in integral domain F[x] is a principal ideal.	[6]
		OR	[0]
Q.5	Α	Prove that the degree of product of two non-zero polynomials is equal to sum of their degree.	[7]
	В	State and prove reminder theorem for polynomials in $F[x]$.	[7]
	С	Find all irreducible polynomials in $z_2[x]$ and in $z_3[x]$ of degree 2 or 3.	[6]
			a 150