Third Year B. Sc. Examination

Physics: Paper-303

(New Course). Apple 2016

(Atomic Physics, Nuclear Physics, Solid State Physics)

Time	:2 Hours Paper code > 8939 [Total Marks:	75
Instructions: (i) Symbols have their usual meaning.		
	(ii) Figures on right hand side show marks of that question.	
Q:1:	(a) Discuss the normal Zeeman effect using vector atom model. D	erive
	equation of frequency of splitted spectral line under influence of st	
	magnetic field.	[10]
	(b) Describe the experimental set-up of Stark-effect.	[09]
	OR	
Q:1:	(a) What is Paschen-Back effect? Derive an expression for change in en	ergy
	and discuss the transitions for lithium D1, D2 line.	[10]
	(b) The Cadmium red line of wavelength λ = 6438 Å (P \rightarrow S Trans	ition)
	exhibits Normal Zeeman splitting when placed in uniform magnetic field	
	8 Tesla. Calculate the wavelength of three Zeeman components	and
	separation between them.	[05]
	(c) Calculate the Lande g factor for $^{10}H_{1/2}$ and $^{10}G_{1/2}$.	[04]
Q:2:	: (a) Derive the semi empirical Binding Energy formula in the case of liquid dr	
	model.	[10]
	(b) Discuss the applications of NMR in Physics.	[09]
OR		
Q:2:	(a) Discuss nuclear shell model with the explanation of magic numbers.	[10]
	(b) Write note on "Standard Model of Elementary Particles".	[05]
	(c) Explain the term "Nuclear Isomers" and "Stripping Reaction".	[04]
Q:3:	(a) Derive dispersion relation for diatomic lattice in 1-d and prove that	
	medium actsas continuous medium for lower frequencies.	[12]
	(b) Describe in detail the Kronig-Penney Model.	[07]
OR		
Q:3:	(a) Mention the drawbacks of classical theory and Einstein's theory of spec	ific
	heat, discuss Debye's Approximation. Write the formula of average energy o	

a solid according to Debye's theory and prove that for high temperatures it fellows the classical nature and for low temperature it follows the T³ nature.[14]

(b) Discuss the effect, of temperature and magnetic field on superconductivity.

[05]

Q:4: (a) What is meant by the free electron gas model of metals? Mention the failures of classical theory of free electron gas.

[10]

(b) State and prove Bloch-theorem of band theory of solid.

[08]

OR

Q:4: (a) Discuss F-H Landon theory and derive F-H Landon equations to explain Zero resistivity and diamagnetic behavior of superconductors.

[13]

(b) Mention outstanding properties of superconductors.

[05]

----X----X----X--