Third Year B.Sc. Examination

Physics: Paper-302

OC+-2017

(Electrostatics, Electrodynamics, Laser, Fiber Optics, X-rays)

Time: 2 Hours] [Total	Marks: 75
Code → 8938	2-2
Instructions: (i) Symbols have their usual meaning. (ii) Figures on right hand side show marks of that question.	
Q-1	
(a). Derive relation between Electric field intensity (\vec{E}) , Polarisation (\vec{P}) & Electric field intensity (\vec{E}) , Polarisation (\vec{P})	ectric (10)
(b). Explain with the help of Debye's modification of Claussius relation, the methostudy the molecular structure.	od to (06)
(c). Calculate the induced dipole moment per unit volume of He gas placed in an effield of 5x10 ³ Volt/cm. (The molecular polarizability is 2.33x10 ⁻⁴¹ farad.m ² and density of He gas is 20.6x10 ²⁵ molecules/m ³ .	lectric d (03)
Q. 1 OR (a). Derive Biot-Savart's law.	(10)
(b). Prove that $\vec{\nabla} \cdot \vec{\mathbf{B}} = 0$.	(06)
(c). Define current density and derive Ohm's law in terms of current density.	(03)
Q-2	
(a). Discuss the propagation of electromagnetic waves in ionized media. Derive the formulae of (i) Wave propagation vector (Phase constant) (ii) Phase Velocity v _p	е
(iii) Plasma frequency and (iv) Refractive index of ionized gas (Plasma)	(10)
(b). Prove that tangential component of magnetic intensity is continuous across the surface separating two dielectrics.	(06)
(c). Write Maxwell's equation in linear isotropic media.	(03)
(P.T.O.)	

OR

	(a). Discuss propagation of plane electromagnetic waves in ionized gas and derive the	
	formula of conductivity $\sigma = -\frac{j N e^2}{m \omega}$ in an ionized media.	(10)
	(b). Prove that the tangential component of electric field intensity is continuous across boundary.	(06)
	(c). Write Maxwell's equations in free space.	(03)
	Q-3	
	(a). Justify with example that in order to achieve LASER action there must be at least three energy levels.	(07)
	(b). Discuss Auger effect in detail.	(10)
	(c). Define stimulated emission.	(02)
Q. 3	OR	
Sq.	(a). Write short note on: Uses of LASER.	(07)
	(b). Explain Construction and working of He-Ne LASER.	(10)
	(c). Define population inversion.	(02)
	Q-4	
	(a). Explain the principle of light transmission in a optical fiber. Derive the formula for the Numerical aperture (NA) and explain acceptance angle and acceptance cone.	(12)
	(b). Explain various modes of propagation in optical fiber.	(06)
03.4	OR	
	(a). Write in detail on optical fiber losses.	(11)
	(b). Explain uses of optical fiber.	(07)