Code: 21501

B.Sc. Semester – 5 CBCS (NEW) MAT-CC-506: Complex Analysis-I

Time: 2 ½ Hours Total Marks: 70

Note: Notations used are standard notations.

Q.1 (a) State and prove the De – Moiver's theorem for rational number. [9]

(b) Prove that
$$x + \frac{1}{x} = 2\cos\theta$$
 for $x = e^{i\theta}$ [5]

OR

Q.1 (a) If $x + \frac{1}{x} = 2\cos\alpha$ and $y + \frac{1}{y} = 2\cos\beta$ then prove that [7]

$$(i)x^m y^n + \frac{1}{x^m y^n} = 2\cos(m\alpha + n\beta)$$

$$(ii)x^m y^n - \frac{1}{x^m y^n} = 2i\sin(m\alpha + n\beta)$$

(b) Find the roots of : (i) $x^9 + x^5 + x^4 + 1 = 0$ (ii) $x^6 + i = 0$ [7]

Q.2 (a) Obtain expansion of (i) $\sin 7\theta$ (ii) $\cos 7\theta$ [7]

(b) Compute the expansion of $\sin^8 \theta$ in terms of $\cos \theta$ only. [7]

OR

Q.2 (a) Expand $\tan \alpha$ in terms of α . [7]

(b) Compute the expansion of $\sin^7 \theta$ in terms of $\sin \theta$ only. [7]

Q.3 (a) Find the value : (i) $e^{2+3\pi i}$ (ii) $e^{\frac{1}{2}+\frac{\pi}{4}i}$ (iii) $e^{2+\pi i}$ [7]

(b) Obtain the expansion series of $\cos hY$ and $\sin hY$ in terms of Y. [7]

OR

Q.3 (a) Derive relation between circular and hyperbolic functions. [7]

(b) If $\tan \frac{x}{2} = \tan h \frac{u}{2}$ then prove that (i) $\sin h u = \tan x$ (ii) $\cos h u = [7]$ $\sec x$

Q.4 (a) Prove that $\tanh^{-1}\left(\frac{x-y}{x+y}\right) = \frac{1}{2}\log\left(\frac{x}{y}\right)$ [7]

(b) Solve: (i) $\sin h z = i (ii) \cos h z = \frac{1}{2} (iii) \cos z = 2$ [7]

$$(iv) \exp(2z - 1) = 1(v) \exp(z) = -2.$$

OR

- Q.4 (a) Define the inverse of : (i) sine function, (ii) cosine function and (iii) [7] Tangent function.
 - (b) Prove that $\log\left(\frac{a+ib}{a-ib}\right) = 2i \tan^{-1} \frac{b}{a}$ [7]
- Q.5 (a) Obtain f'(z) of : $(i) \frac{1}{z}$ (ii) $\sin z$ (iii) e^z [7]
 - (b) If a complex function of complex variable is differentiable at point Z_0 [7] then it is continuous at same point but converse is not true.

OR

- Q.5 (a) Obtain f'(z) of: (i) $\tan z$ (ii) $\cos^2 z$ (iii) $z^{1/2}$ [7]
 - (b) Let f(z) = u + iv, z = x + iy, $z_0 = x_0 + iy_0$, $w_0 = u_0 + iv_0$, where [7] u = u(x,y), v = v(x,y), $u_0 = u_0(x_0,y_0)$, $v_0 = v_0(x_0,y_0)$ then show that $\lim_{z \to z_0} f(z) = w_0 \iff \lim_{(x,y) \to (x_0,y_0)} u(x,y) = u_0$

$$\Leftrightarrow \lim_{(x,y)\to(x_0,y_0)} v(x,y) = v_0$$
