B.Sc. EXAMINATION: A PRICE 2016 SEMESTER-IV DIFFERENTIAL & INTEGRAL CALCULUS

PAPER NO.:M-401		DIFFERENTIAL & INTEGNAL CALCOLOS	CODE NO:3836	
TIME:2:30		INSTRUCTIONS(1)ALL QUESTIONS ARE COMPULSORY.	OTAL MARKS:70	
		(2)EACH QUESTION CARRY EQUAL MARKS.		
Q.1	Α	Find P.D.E of $f\left(\frac{xy}{z}, \frac{yz}{x}\right) = 0$	[7]	
	В	Find general solution of the P.D.E: $(z^2 - 2yz - y^2)p + x(y+z)q = x(y+z)q$	(y-z) [7]	
		OR		
Q.1	Α	Find P.D.E of $(1 + b^3)z = 8(x + by + a)^3$	[7]	
	В	Find general solution of the P.D.E : $x^4(y - z)p + y^4(z - x)q = z^4(x - y)$). [7]	
Q.2	А	Obtain formula of radius of curvature of curve :x=f(t) ,y=g(t)	[7]	
·	В	Find radius of curvature of $x^2y + xy^2 + xy + y^2 - 3x = 0$ at original OR	gin [7]	
0.3	Δ	Find radius of curvature of $x^2 + 5xy + 8y^2 - 40x = 0$ at origin	[7]	
Q.2	A B	Obtain formula of radius of curvature of curve: y=f(x)	[7]	
	Ь	Ostan Termina e Casassa a		
Q.3	А	Find equation of tangent plane and normal line to the surface : $5x^2+6y^2+7z^2=100$ at (8,9,10)	[7]	
	В	Prove :div(curl f)=0 for $f=(x^3yz, xy^3z, xyz^3)$	[7]	
		OR Find equation of tangent line and normal plane to the curve:	[7]	
Q.3	А	$x^2 - y^2 - 4z^2 = 49$, $x + 3y + 8z = 9$ at point (2,3,2)		
	В	Prove :div(f \times g) = g.curlf –f. curlg. for f = (f ₁ ,f ₂ ,f ₃) and g = (g ₁ ,g ₂ ,	g ₃). [7]	
0.4	А	Evaluate: $\int_{1}^{3} \int_{1}^{2} x^{2}y(x+y) dxdy$	[7]	
Q.4			[7]	
	В	Evaluate: $\int_0^{-\frac{\pi}{2}} \int_{-1}^1 (x \sin y - y e^x) dy dx$		
		OR	[7]	
Q.4	Α	Evaluate: $\int_0^9 \int_0^{\sqrt{36-y^2}} (xy) dxdy$		
	В	Evaluate: $\iint_s (x^2 + y^2) dxdy$ Where $s = [0,1] \times [x, \sqrt{x}]$.	[7]	
Q.5	А	Evaluate $\int x dy - y dx$ over circle x = cost, y=1- sint, $(-\frac{\pi}{2} \le t \le 0)$,	[7]	
·		From (0,0) to (2,2)		
	В	Verify Stoke's theorem for $(-y^2, x^2, 0)$,	[7]	
		where C is the circle : $x^2 + y^2 = 16$, Z = 0		
Q.5	А	Let $f = (f_1, f_2, f_3)$ be continuous vector function in R.the line integr	ral [7]	
~		$\int f \cdot dr$ is independent of path C joining points P & Q $\Leftrightarrow \oint_{c} f \cdot dr$		
	В	Evaluate: $\iiint_s xyz dxdydz$ Where $s = [0,1] \times [0,2] \times [0,3]$.	[7]	
		5555		