B.Sc. EXAMINATION:MARCH / APRIL- 2 016

PAPER NO.:M-402 TIME:2:30HOURS LINEAR ALGEBRA II

CODE NO:3837 TOTAL MARKS:70

INSTRUCTIONS(1)ALL QUESTIONS ARE COMPULSORY.

		(2)EACH QUESTIONS ARE COMPUTED ON THE PROPERTY (2) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	
Q.1	Α	State and prove gram Schmidt orthogonalization process.	[7]
α.1	В	Apply gram Schmidt process to obtain an orthonormal basis from	[7]
		$\{(0, 0, 2), (2, 1, 0), (-1, 2, 1)\}.$	
		OR	
Q.1	Α	If $B=\{x_1,x_2,x_3,x_n\}$ be orthonormal basis and for $y \in V$ prove that	[7]
•		$\ Y\ ^2 = \sum_{i=1}^{n} x_i ^2$	
	В	State and prove Schwartz's inequality.	[7]
Q.2	Α	State and prove riesz representation theoerem.	[7]
	В	Define symmetric linear transformation and verify the following function is linear	[7]
		symmetric or not ?	
		T: $R^3 \rightarrow R^3$; $T(x,y,z) = (2x + 3y + z, 3x + 4y + z, x + y + 5z)$	
		OR - Washington then T is orthogonal iff T(X) = X	[7]
Q.2	A	T: $V \rightarrow V$ be a linear function then T is orthogonal iff $ T(X) = X $	[7]
	В	If $W = sp\{(1, 0, 1), (0, 1, 1)\}$ then obtain W^{\perp}	[7]
Q.3	Α	Prove that $ n+a = r+b = 2 p = r$. ,
		Prove that $\begin{vmatrix} a+b & b+c & c+a \\ p+q & q+r & r+p \\ x+y & y+z & z+x \end{vmatrix} = 2 \begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix}$	
	В	Solve the following linear equation by Cramer's rule.	[7]
		3x + 4y + 7z = 2; $4y - 7z = 2$; $7x + 9y + 63z = 2$.	
		OR	
Q.3	Α	Solve the following linear equation by Cramer's rule.	[7]
		X+8y = 3; $3x + 4y - 9z = 3$; $x + 8y + 7z = 3$.	[7]
	В	Find the value of A = $\begin{vmatrix} 1 & 1 & 1 & 1 \\ \alpha & \beta & y & \delta \\ y + \beta & y + \delta & \delta + \alpha & \alpha + \beta \\ \delta & \alpha & \beta & y \end{vmatrix}$.	[7]
		Find the value of A = $\begin{vmatrix} \alpha & \beta & y \\ y + \beta & y + \delta & \delta + \alpha & \alpha + \beta \end{vmatrix}$.	
Q.4	Α	If T: $R^2 \rightarrow R^2$, T (x,y) = (x +y ,3x - 2y) then find Eigen values and Eigen vectors of T.	[7]
Ì	В	Find the direction of principal axis of the conic $2x^2 + 3xy - 2y^2 = 10$ by diagonalization	[7]
		method.	
		OR	
Q.4	Α	Verify cayley theorem for the function If T: $R^3 \rightarrow R^3$, T (x,y,z) = (x +z,y-x,x+y+z)	[7]
	В	Find the direction of principal axis of the conic $x^2 + xy + y^2 = 1$ by diagonalization	[7]
		method.	
Q.5	Α	Define the curve represented by the equation $2x^2-72xy+23y^2+140x-20y+50=0$.	[7]
	В	Verify the distributive law for vectors $u = 2i - 3j + k$ and $v = i + j + k$ and $w = i + 3j + k$	[7]
		for u ,v ,w ∈V	
		OR	r 3
Q.5	Α	If $\emptyset(x,y) = x_1y_1 - x_2y_1 + x_2y_2$ then \emptyset is bilinear or not ?	[7]
	В	Define the curve represented by the equation	[7]
		$11x^2 + 6xy + 19y^2 = 80 .$	