CODE:3837

B.S.C.— SEM-IV EXAMINATION - MARCH M-402: LINEAR ALGEBRA II

TIME:2:30 Hours

TOTAL MARKS:70

INSTRUCTIONS: (1) All questions are compulsory.

(2) Each question carries equal marks.

Q.1	Α	State and prove gram- Schmidt orthogonalization process to obtain an orthonormal basis.	[07]
	В	Apply gram- Schmidt process to obtain an orthonormal basis for vector set $\{(1,1,1,1),(0,2,0,2),(-1,1,3,-1)\}.$	[07]
		OR	
Q.1	Α	State and prove Schwartz's inequality.	[07]
	В	Apply gram- Schmidt process to obtain an orthonormal basis for vector set $\{(1,-1,1,-1),(5,1,1,1),(2,3,4,-1)\}.$	[07]
Q.2	Α	State and prove riesz representation theorem.	[07]
	В	Find the coordinate of the polynomial $3 + 4x + 9x^2$ relative to ordered basis $\{x^2 + 1, x^3\}$.	[07]
		OR	
Q.2	Α	T: $V \rightarrow V$ be a linear function then the following are equivalent. (1)T is orthogonal. (2) $ T(X) = X $.	[07]
		(3) If $\{e_i\}$ for $i = 1,2,n$ is an orthonormal basis then	
		$\{T(e_i)/i=1,2,n\}$ is an orthonormal basis.	
	В	Define symmetric linear transformation and verify the following functions are linear symmetric or not? T: $R^3 \rightarrow R^3$;	[07]
		$T(x) = (2a_1 + 3a_2 + a_3, 3a_1 + 4a_2 + a_3, a_1 + a_2 + 5a_3),$	
		$T(x) = \left(\frac{a_1 - a_2}{\sqrt{2}}, \frac{a_1 + a_2 - 2a_3}{\sqrt{6}}, \frac{a_1 + a_2 + a_3}{\sqrt{3}}\right).$	
Q.3	Α	Define vector product and prove $ u \times v = u \cdot v - u \cdot v $	[10]
	В	Prove that,	[04]
		$\begin{vmatrix} 1+a & 1 & 1 & 1 \\ 1 & 1+b & 1 & 1 \\ 1 & 1 & 1+c & 1 \\ 1 & 1 & 1+d \end{vmatrix} = (abcd) \left(1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}\right)$	•
		0R	
Q.3	Α		[10]

Q.3 A Find the value of A =
$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ \alpha & \beta & y & \delta \\ y + \beta & y + \delta & \delta + \alpha & \alpha + \beta \\ \delta & \alpha & \beta & y \end{bmatrix}.$$
 [10]

B Solve the following linear equation by Cramer's rule. [04] 3x + 4y + 7z = -1; 4y - 7z = 52; 7x + 9y + 63z = 32.

Q.4 A Verify
$$\begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ yz & zx & xy \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ x^2 & y^2 & z^2 \\ x^3 & y^3 & z^3 \end{vmatrix}$$
 [07]

B Find the direction of principal axis of the conic $8x^2 - 12xy + 17y^2 = 80$ [07] by diagonalization method.

Q.4	Α	If T: $R^3 \rightarrow R^3$, T (x,y,z) = (x +y +2z,y,x -2y +z) then find Eigen values and	
		Eigen vectors of T.	
	В	Find the direction of principal axis of the conic $2x^2 + 3xy - 2y^2 = 10$ by	
		diagonalization method.	
Q.5	Α	Discuss classification of quadrics.	
α.5	В	Identify the curve represented by	
	_	the equation $2x^2 - 72xy + 23y^2 + 140x - 20y + 50 = 0$.	
		OR	
Q.5	Α	State and prove the properties of bilinear form on a vector space V.	
	В	If $\emptyset(x,y) = x_1y_1 - x_1y_2 + 2x_2y_1 + 5x_2y_2$ then \emptyset is bilinear or not ?	

j