0 1 HOY 2020 Sees. code. 21017

૧. દરેક પ્રશ્નનો [a] અથવા [a(i)] અને [a(ii)] જ લખવાના રહેશે.

૨. પ્રશ્ન : ૧[a] અથવા ૧[a(i)] અને ૧[a(ii)] તથા ૨[a] અથવા ૨[a(i)] અને ૨[a(ii)] ના 14 માર્કસ ના બદલે ૧૮ માર્કસ ૨હેશે. 3. પ્રશ્ન : 3[a] અથવા 3[a(i)] અને 3[a(ii)] તથા $\sqrt[4]{a}$ અથવા $\sqrt[4]{a(i)}$ અને $\sqrt[4]{a(ii)}$ ના 14 માર્કસ ના બદલે ૧७ માર્કસ સ્ઢેશે.

૪. દરેક પ્રશ્વનો પ્રશ્વ નં ૧(b), પ્રશ્વ નં ૨(b), પ્રશ્વ નં ૩(b) તથા પ્રશ્વ નં ૪(b) (ટુંકા પ્રશ્વો) વિદ્યાર્થીએ લખવાના નથી.

B.SC.SEM- IV

Mathematics: Paper no. MAT-CC-404 CODE:21017/21038 Linear Algebra-II & Numerical Analysis-II

Total marks - 70

Q.1	Α	If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear map defined by $T(x, y) = (x+y, y)$ then find	14
		$[T;B_1,B_2]$, where $B_1 = \{(1,0),(1,1)\}$ and $B_2 = \{(0,1,),(2,0)\}$ and also	
		obtain linear transformation associated with a matrix $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.	
		OR	
	A(i)	State and prove Schwartz's inequality.	07
	A(ii)	Prove that an orthogonal set of non zero vectors in inner product space	07
	/ \(\(\)	is linearly independent.	
		is interny independent.	
	В	Choose any four questions out of the following six questions.	04
	(i)	Find the linear map associated with identity real matrix of order 2.	
	(ii)	What is the dimension of a vector space $L(\mathbb{R}^2,\mathbb{R}^3)$?	
	(iii)	Write a statement of triangular inequality.	
	(iv)	True/False: Every inner product space is a vector space.	
	(v)	Find an element in inner product space which is orthogonal to every	
		other element.	
	(vi)	Find an orthonormal basis of $\{(2,0),(2,2)\}$.	
	, ,		
Q.2	Α	Derive stirling interpolation formula and using its derive its derivatives	14
		formula.	
		OR	
	A(i)	Derive Newton Divided Difference formula.	07
	A(ii)	Derive Bessel's interpolation formula.	07
	В	Choose any four questions out of the following six questions.	04
	(i)	For interpolation near the middle of a table, Bessel's formula is most	
	V -7	efficient near p= (a)1/2 (b)1 (c)1/9 (d)2	
		Emiliar and Section 1	

	(ii)	When the arguments are not equally spaced which formula is useful?	
		(a)Lagrange's (b)Stirling (c)Bessel's (d)Everett's	
	(iii)	Stirling interpolation formula gives good estimate when	
		(a) $-\frac{1}{4} \le p \le \frac{1}{4}$ (b)-1 \le p ≤ 1 (c)-2 \le p ≤ 2 (d)None of these	
	(iv)	Which formula contains only even differences?	
		(a)Everett's (b) sterling (c)Bessel's (d)Lagrange's	
	(v)	Write a relation between divided difference and forward difference.	
	(vi)	Define Divided difference.	
Q.3	А	Derive a general quadrature rule and using its derive Simpson's $\frac{3}{8}$ rule.	14
	A(i)	Discuss Newton's cotes formula.	07
	A(ii)	Find the sum of the second power of the first n natural numbers by	07
		using Euler-Maclaurin formula.	
	В	Choose any three questions out of the following five questions.	03
	(i)	Define numerical integration.	
	(ii)	General quadrature formula derive by using formula.	
		(a)Newton's forward (b)Newton's backward	
		(c)Gauss forward (d)Gauss backward	
	(iii)	Write Trapezoidal rule.	
	(iv)	Simpson's $\frac{1}{3}$ rule derive by put n= in general quadrature formula.	
	4	(a)6 (b)1 (c)2 (d) 3	
	(v)	Weddle's rule requires the division of the whole range into a multiple of	
		number of subintervals.	
		(a)1 (b)2 (c)4 (d)6	
Q.4	А	Discuss false position method and Newton Raphson method.	14
		OR	
	A(i)	Discuss Euler's method.	07
	A(ii)	Discuss Picard's method.	07

В Choose any three questions out of the following five questions. 03 Write a condition for the sequence of approximations converges to a (i) root in iteration method. Newton-Raphson method has a order of convergence. (ii) (a)0 (b)1 (c)2(d)3 Which method is not useful for finding an approximate solution of first (iii) order differential equation ? (a)Runge-Kutta (b)Newton-Raphson (c)Taylor's series (d)Euler (iv) Which method yield the solution in series form ? (a)Runge-Kutta (b)Newton-Raphson (c)Taylor's series (d)Euler Milne's formula derive by using formula. (v) (a)Newton's forward (b)Newton's backward

(d)Gauss backward

(c)Gauss forward

