M-403: NUMERICAL ANALYSIS

TIME: 2:30 Hours

TOTAL

MARKS:70

INSTRUCTIONS: (1) All questions are compulsory.

(2) Each question carries equal marks.

Q.1	Α	Derive differential formula based on Newton's backward formula	[07]
Q.1	В	Find y'(0.45) and y''(0.45) from the following table.	[07]
		X 0.35 0.40 0.45 0.50 0.55	
		Y 1.521 1.506 1.488 1.467 1.444	
		OR	
Q.1	Α	Derive differential formula based on Sterling's formula	[07]
	В	Find the 1 st 2^{nd} and 3^{rd} derivatives of $f(x)$ at $x = 2.5$ using Newton's forward formula	[07]
		X 2.5 3.0 3.5 4.0 4.5 5.0	
		f(x) 3.375 7.000 13.625 24.000 38.875 59.000	
Q.2	Α	Derive Simpson's $\frac{1}{3}^{rd}$ rule	[07]
	В	Evaluate $\int_0^1 \frac{1}{1+x^3} dx$ using Trapezoidal rule by taking 7 co-ordinates.	[07]
		OR	
Q.2	Α	Derive General quadrature formula	[07]
	В	Evaluate integration $\int_0^{\frac{\pi}{2}}\cos\theta\mathrm{d}\theta$ by waddle's rule by dividing into 6 equal sub-parts.	[07]
Q.3	Α	Derive :- Q ₃₃ (0)	[07]
	В	Discuss symbol for integration formula	[07]
		OR	
Q.3	Α	Discuss Newton's cotes formula.	[07]
	В	Prove that ; $Q_{31}(1) = \frac{h}{24}(-1, 13, 13, -1)$	[07]
Q.4	Α	Discuss: Bisection method.	[07]
	В	Solve the equation $f(x)$: x^2 - $6x +1=0$ by Newton-Raphson formula correct to three	[07]
		decimal places.	
0.4	٨	OR Derive Method of false position ,derive the formula for finding p th root of positive	[07]
Q.4	Α	number N.	[01]
	В	Find the real root of the equation $f(x)$: $x e^{x}-1 = 0$ correct to three decimal places. Using	[07]
		method of successive approximation.	
Q.5	Α	Derive Taylor's series method	[07]
	В	Using Euler's method , solve $\frac{dy}{dx} = y + 2x^2$, y(0) =1 , compute y(0.1) and	[07]
		y(0.2)whenever h = 0.1.	
		OR	
Q.5	Α	Given the differential equation for Runge-Kutta 4 th order $\frac{dy}{dx} = \frac{y+x}{y-x}$ with y(0) =1, find	
		y(0.2) whenever h = 0.1.	[07]
	В	Discuss modified Euler's method.	[07]