17 OCT 2019

Examination October -2019 B.SC.SEM- V

Seat No.

Mathematics: Paper no. MAT-CC -504 MATHEMATICAL ANALYSIS- I

CODE: 21499

Time:	2:30 H	Hours Total marks 70	`
		Instruction: All questions are compulsory. Total marks - 70)
Q-1	A	If $f: [a,b] \to R$ is a bounded function and $p, p' \in p[a,b] \exists p \subset p'$ then prove that . $L(p,f) \le L(p',f) \le U(p',f) \le U(p,f)$	14
Q-1	A(i)	OR State and prove Darbouxe's theorem.	
-			07
Q-1	A(ii) B	Prove that every continuous function is R- integrable. Attempt any three.	07
	(i)	In Usual notation $U(P,f) = $ (Fill the blank)	03
	(ii)	In usual notation , $\int_a^{\bar{b}} f(x)dx =$ (Fill the blank)	
	(iii)	In usual notation, if p_1 and p_2 be two partition of [a,b] then	
	` ′	(a) $L(p_{1,f}) \le U(p_2,f)$ (b) $U(p_1,f) \le L(p_{2,f})$ (c) both (a) and (b) (d)None of these	
	(iv)	$f(x) = \frac{20}{x}$, $x \in [2,20]$, partition $p = \{2,4,5,20\}$ then $ P =$	
	(v)	if $P = \{x_0, x_1, x_2, x_3, \dots, x_n\}$ is partition of $[a,b]$ then	
		(a) $x_0 \ge x_1 \ge x_2 \ge x_3$ $\ge x_n$ (b) $x_0 \le x_1 \le x_2 \le x_3$ $\le x_n$ (c) both (a) and (b) (d)All of these	
Q-2	A	if bounded function $f(x)$ is R-integrable on $[a,b]$ and $F(x) = \int_a^x f(t)dt$, $a \le x \le b$ then (1) $F(x)$ is continuous on $[a,b]$ (2) If $f(x)$ is continuous on $[a,b]$ then $F(x)$ is differentiable on $[a,b]$ and $F'(x) = f(x)$, $\forall x \in [a,b]$.	14
7. 2	A (!)	OR	
Q-2	A(i) A(ii)	State and prove general form of first mean value theorem of Riemann Integration. State and prove fundamental theorem of R- integral.	07 07
Q-2	В	Attempt any three.	03
	(i) (ii)	Write Formula of General Form of Second mean value theorem.	03
	(ii)	$f,g \in R_{[a,b]} \text{ then}$	
	(iii)	(a) $f+g \in R_{[a,b]}$ (b) $f-g \in R_{[a,b]}$ (c) $f \cdot g \in R_{[a,b]}$ (d) All of these In usual Notation, $f \in R$, iff $F \circ g > 0$	
	(***)	In usual Notation, $f \in R_{[a,b]}$ iff For $\varepsilon > 0$ (a) $U(p,f) + L(p,f) < \varepsilon$ (b) $U(p,f) - L(p,f) < \varepsilon$ (c) $L(p,f) - U(p,f) < \varepsilon$ (d) none	
	(iv)	If function f is in [a,b] then $f \in R_{[a,b]}$	
		(a) Continuous (b) Decreasing function (c) Increasing function (d) All of these	
)- 3	(v)	write Formula of fundamental theorem of integral calculus	
<u>i-2</u>	Α	State and prove Hausdroff's property for metric space and define discrete matric	14

space and obtain it.

Q-3	A(i)	Prove or disprove : (1) Int (A \cup B) = Int (A) \cup Int (B) (2) Int (A \cap B) = Int (A) \cap	0
	A(ii		Ü
Q-3	В	If (X, d) is matric space, then prove that $(X, \frac{d}{1+d})$ is also matric space. Attempt any four.	0
	(i)	If E = (18, 19) is subset of metric space R then $\bar{E} = \dots$ (Fill the blank)	04
	(ii) (iii)	If (R,d) is real discrete metric space then $N(1.5,0.5) =$ (A) {1.5} (B) R (C) (1.2)	
	(iv)	Figure 3. Land 0 are both boundary points of $E = [a,b]$	
		Define: limit point in metric space.	
	(v)	Write any two interior points of $E = (2018, 2019)$.	
	(vi)	True or false: Every closed interval of real line is an open set.	
)-4	A	Prove that: every convergent sequence is Cauchy sequence but converse is not true and prove that R is complete metric space.	14
		OR	
2-4	A(i)	In a metric space, limit of function exists then it is unique.	07
	A(ii)	Define cantor set and prove that it is closed set.	
-4	В	Attempt any four.	07
	(i)	True or false: Cantor set is perfect set.	04
	(ii)	True or false: $\{ n^{2019} / n \in N \}$ is convergent sequence.	
	(iii)	True or false: Every convergent sequence converges to unique limit.	
	(iv)	Which one of following is in cantor set.	
	(v)	(A) $\frac{19}{3}$ (B) $\frac{10}{9}$ (C) 1 (D) $\frac{3}{2}$ Define: Convergent sequence.	
	(vi)	$\{\frac{1}{\pi n} / n \in N\}$ is/aresequence.(convergent /divergent/bounded) (Fill the blank)	