meurch-2015

B.Sc. EXAMINATION: SEMESTER-VI

COMPLEX ANALYSIS-II

CODE:4623 MARKS:70

PAPER NO.:M-605 TIME:2:30 HOURS

TIME:2:30 HOURS		INSTRUCTIONS: (1) ALL QUESTIONS ARE COMPULSORY. (2) EACH QUESTION CARRY EQUAL MARKS.	
Q.1	А	If complex function of complex variables is differentiable at a given point then it is continuous there ,but converse is not true.	07
•	В	1. Prove that $f(z) = \sin hz$ is an entire function and also obtain $f'(z)$.	04
		2.Show why function $f(z) = xy + iy$ is nowhere analytic OR	03
Q.1	A B	Obtain C-R condition for analytic function in polar form. $f(z) = z^3$ prove that $f(z)$ is entire function, also obtain f'(z) and $f''(z)$.	07 07
Q.2	А	If $f(z) = u + iv$ is analytic function then prove that u and v are both harmonic function.	07
	В	Obtain Laplace's equation in polar form for analytic function f(z)=u+iv OR	07
Q.2	Α	Prove that $u = 2x-x^3+3xy^2$ is harmonic function. Also obtain harmonic conjugate of u and corresponding analytic function.	07
	В	If f(z) is analytic function of z then prove that, $\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right] \text{Ref}(z) ^2 = 2 f'(z) ^2$	07
Q.3	Α .	If f(z) is analytic function in domain D and it is real valued function then it is constant.	07
	В	$f(z) = u+iv$ is analytic function of $z=x+iy$ and ϕ is function of x and y whose first and second order partial derivatives exists then prove that $(\frac{\partial \phi}{\partial x})^2 + (\frac{\partial \phi}{\partial y})^2 = [(\frac{\partial \phi}{\partial u})^2 + (\frac{\partial \phi}{\partial v})^2] f'(z) ^2$ OR	07
Q.3	А	Prove that $u(r,\theta) = \log r, r > 0, 0 < \theta < 2\pi$ is harmonic function also obtain harmonic conjugate of u.	07
٠	В	If $f(z)$ satisfied C-R condition in polar form then prove that $f'(z) = (\cos \theta - i\sin \theta) (u_r + iv_r)$.	07
Q.4	А	If u and v both are harmonic functions of x and y and $P=u_y+v_x$ and $Q=u_x-v_y$ then prove that $f(z)=P+iQ$ is an analytic function.	07
	В	Find Res (f(z), singular point) for following functions: 1. $f(z) = \frac{z+1}{z^2-2z}$ 2. $f(z) = \frac{\exp z}{z^2+\pi^2}$	07

OR

 —Q.4——	—A———	Find value of $\int_{c} \frac{z+1}{(z-2)(z-3)(z^2+2014)} dz$	07
	В	where c: $ z = 4$. Find Res (f(z), singular point) for following functions: $f(z) = \frac{1}{z^3} \csc^2$	07
Q.5	А	Discuss mapping $w = z^3$.	07
	В	Discuss mapping $w = e^z$ and prove it is conformal.	07
		OR	
Q.5	Α	State and prove cauchy residue theorem.	07
	В	Show that mapping $w = \frac{1}{z}$ transforms circles and lines	07
		into circles and lines.	