B.Sc.Semester-VI,Exam. Paper-STAT-CC- 604 (Designs of Experiments)

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

8

6

6

Instructions: 1) There are 5 compulsory questions in this question paper.

- 2) All questions carry equal marks.
- 3) Use of Scientific calculator is allowed.
- 4) Graph paper will be provided on request.
- Q-1 a) Distinguish between fixed effect model and random effect model in the analysis of variance.
 - b) Define the following terms

(i) Treatments

(ii) Complete blocks

(iii) Experimental Error (iv) Extraneous factors

OR

- Q-1 a) Describe the fixed effect mathematical model for ANOVA testing in one way classification. Stating clearly-
 - (i) The assumptions
- (ii) The hypothesis to be tested
- (iii) The test statistics to be used and (iv) ANOVA Table
- b) What are the three basic principle of design of experiment. Explain in brief.
- Q-2 a) Give the complete analysis of RBD. Explain the situation when it is used.
 - b) Describe Missing plot technique in the design of experiment. State its advantages, is missing plot technique applicable in CRD? why?

OR

- Q-2 a) Outline the various steps in carrying out the ANOVA of Randomized Block 8 Design. State its Merits and demerits.
 - b) Asset of data involving four tropical feed stuffs A,B,C,,D tried on 20 chicks are treated alike in all respects except the feeding treatments and each feeding treatment is given to 5 chicks. Analyse the data.

{Given: $[F_{(3,12)}=3.49, F_{(12,3)}=8.74, F_{(4,12)}=3.26, F_{(12,4)}=5.91]$ }

Feed	Gain in weight												
Α	55	49	42	21	52								
В	61	112	30	89	63								
С	42	97	81	95	92								
D	169	137	169	85	154								

- Q-3 a) What is a Latin Square Design? Obtain the formula for estimating one missing yield in Latin Square Design. Also state the ANOVA of such design.
 - b) For the following data, identify the design, estimate the missing yield and analyze the data completely.

{Given: $[F_{Tab(2,1)}=200, F_{Tab(1,2)}=18.51 \text{ For Rows, Columns}]$

B 23	A 17	C 29
A 16	C (x)	B 16
C 24	B 18	A 12

6

OR

		OR .				
Q-3 a) Give layout plan of R. B. D. with 5 treatments are replicated 4 times yield of one plot is missing in RBD. Explain the missing plot technic estimating the missing yield. Give analysis of such design.						
	b)	Distinguish between C.R.D. and R.B.D.	6			
Q-4	a)	Define the following terms, give example of each i) Treatment contrast ii) Orthogonal Treatment contrast	6			
	b)	What do you mean by the factorial experiment? Explain in brief. State advantages of factorial Experiments.	8			
		OR				
Q-4	a)	In a certain 2 ² factorial experiment, there are 2 factors- N and K, write down all	R			

- Q-4 a) In a certain 2² factorial experiment, there are 2 factors- N and K. write down all treatment combinations. Derive the formula for estimating
 - i) Main effect of N & K, and ii) Interaction of NK.
 - b) Explain Yate's Method for 2³ factorial experiments.

Q-5 a) Explain what is meant by main effects and interactions in factorial experiment. 10 A complete 2³ experiment is replicated r times. Describe the procedure for testing the presence of different main effects and interactions. State its ANOVA also

b) Identify the confounded interactions in each case for the following 2³ Factorial 4 Experiment.

Replicate I			Replicate II				Replicate III				[Replicate IV				
(1)	nk	np	pk	(1)	k	np	npk	(1)	n	pk	npk	ſ	(1)	р	nk	npk
npk	n	P	k	n	p	nk	pk	p	k	np	nk	ŀ	n	k	np	pk

OR

- Q-5 a) What is confounding? Define total and partial confounding. Giving illustration of each.
 - b) What is Incomplete Block Design? Define BIBD, give its example. State any two parametric relationship of BIBD.