TIME:2:30

TOTAL

M-603: GRAPH THEORY

HOURS		MARKS:70	
		INSTRUCTIONS: (1) All questions are compulsory.	
		(2) Each question carries equal marks.	
Q.1	А	Give Definitions of Following with example:	[8]
		Pendant vertex , Simple Graph , Regular Graph , Loop	[6]
	В	Obtain the no. of edges in a complete graph K_n . OR	լսյ
Q.1	Α	Prove that in any graph G, the no. of odd vertices is even.	[7]
	В	State and prove Graph theory's first theorem	[7]
Q.2	А	Prove that : Every tree with two or more than two vertex is a 2-cromatic graph	[7]
	В	State and prove necessary and sufficient condition for the graph G to become a disconnected graph.	[7]
		OR	143
Q.2	А	Draw complete graph K_5 , obtain spanning tree for graph K_5 , also obtain rank and nullity of it using spanning tree	[4]
	В	Give Definitions with example: Intersection Graph , Walk , Spanning tree , Unicrusal Graph , Hamiltonian path	[10]
Q.3	А	Prove that in a tree there is exactly one path between any two different vertices	[7]
	В	Prove that in a tree with n vertices has the no. of edges n-1. OR	[7]
Q.3	Α	Write down properties of binary tree.	[7]
	В	State and prove necessary and sufficient condition for the covering g of graph G to become a smallest covering.	[7]
Q.4	А	State and prove Euler's formula for planer graph.	[7]
	В	Prove that K₅ is non planer graph. OR	[7]
Q.4	Α	Prove that Kuratowski's second graph is non planer graph.	[7]
	В	For simple connected graph prove that : $\frac{3f}{2} \le e \le 3n-6$	[7]
Q.5	А	Prove that there is no cut vertex in circuit.	[7]
	В	Prove that W_T is sub space of vector space W_G . OR	[7]
Q.5	Α	Give the method to obtain minimal Decyclization of directed graph.	[7]
	В	Prove that W_s is sub space of vector space W_G .	[7]