1 7 SEP 2019 B.Sc. SEM VI EXAMINATION: PAPER NO.: MAT-CC- 603 | | | RING THEORY (| ODE NO: 21858 | |------------|--------------|--|---------------| | HOL | E: 02
JRS | 120 INCEDITEDIO. (4) ALL OLIFOTIONS AND ADDRESS. | OTAL MARKS:70 | | Q.1 | Α | $(Z,+,\cdot)$ is a ring and $S = \{7m \mid m \in Z\}$. Prove that S is a sub ring of a ring $(Z,+,\cdot)$ | Z ,+ , ·) 07 | | | В | $(R,+,\cdot)$ is a commutative ring with unity. If for $a,b\in R$, $a\oplus b=a+b+1$ | | | | | a $\bigcirc b = a + b + ab$ then prove that (R, \oplus , \bigcirc) is ring. | | | | | OR | | | Q.1 | Α | State and prove elementary properties of ring. | 07 | | | В | Prove that intersection of two sub rings of ring R is a sub ring of a ring R. | 07 | | Q.2 | Α | Prove: Finite integral domain D is a field. | 07 | | | В | Prove; Intersection of two ideals of ring R is an integral domain. | 07 | | 0.3 | ۸ | OR | | | Q.2
Q.3 | A | Prove: Every filed an integral domain but converse is not true. | 07 | | | В | Prove: Field has no proper ideal. | 07 | | | A | Using Euler's theorem, find remainder when 3 ²⁵⁶ is divisible by 4. | 07 | | | В | State and prove Fermat's theorem. | 07 | | ^ 2 | ٨ | OR | | | Q.3 | A | Using Fermat's theorem, find remainder when 3 ⁵¹ is divisible by 7. | 07 | | Q.4 | В | Find all maximal ideals and principal ideals of $(Z_{12}, +_{12}, \cdot_{12})$. | 07 | | | Α | If $f = (1, 2, 4, 0, 0, 4, 0, 0,)$ and $g = (2, 1, 6, 4, 0, 5, 0, 0,)$ are two polynomials in ring $Z_7[x]$ then find $f + g$ and $f.g.$ | g 07 | | | В | For non zero polynomials $f(x)$, $g(x) \in F[x]$ prove that $deg(f(x)g(x)) = deg(f(x)) + deg(g(x))$ | 07 | | | | OR | | | Q.4 | Α | Find G.C.D of $f = (1, 2, 3, 5, 0, 0,)$ and $g = (2, 1, 3, 4, 0, 5, 0, 0,)$ in $Z_7[x]$ and expression $a(x)f(x) + b(x)g(x)$. | | | | В | If $f = (1, -2, 0, 3, 0, 0,)$ and $g = (2, 0, 6, -3, 0, 4, 0, 0,)$ are two polynomials in ring Z [x] then find $f + g$ and f.g. | 07 | | Q.5 | Α | State and prove factor theorem for ring of polynomials. | 07 | | | В | State Eisenstein criterion for irreducibility of polynomials in F[x] and hence prove t $2x^{10}-25x^3+10x^2$ - 30 is irreducible over Q[x] | | | 0.5 | | OR State and area of the first transfer and area of the first transfer and transfer and transfer are | | | Q.5 | A | State and prove division algorithm for ring of polynomials. | 07 | | | В | Prove that $x^4 + 3x^3 + 2x + 4$ is reducible over $Z_5[x]$ and obtains its all factors. | 07 |