B.S	c. S	Seme	ster VI	
Stat	tisti	cs Pa	per ST 602 - 4626	
(Sta	tisi	tical l	inference II)	
•		Marks	· ·	
Dur	atio	on of	Time: $2\frac{1}{2}$ Hours.	
Instructions:			1 There are Five Compulsory questions in this question-paper.	
			2 All questions carry equal marks.	
			3 Statistical Tables and graph-papers will be provided upon	
requ	ues	t.		
_	-		4 Use of a scientific calculator is permitted.	
Q	1	(a)	Explain the following terms:	
-			(1) Interval Estimation and its acceptance compared to	06
			Point Estimation.	
			(2) Confidence Interval and its width.	
		(b)	Describe the full procedure of constructing a $100(1-\infty)$ % confidence	
			interval for the ratio of two variances $\frac{\sigma_1^2}{\sigma_2^2}$ based	80
			on independent random samples of sizes n_1 and n_2	
			from N (μ_1, σ_1^2) and N (μ_2, σ_2^2) respectively.	
			41,1,	
			OR	
Q	1	(a)	Define the following terms:	
		` '	(1) Random Interval	06
			(2) Pivotal Quantity.	
		(b)	Derive a 100(1-a) % confidence interval for the mean of a normal	
			population when its standard deviation is also unknown. If x_1, x_2	08
			x_{10} is an observed random sample from a normal prob. distribution	
			$N(\mu, \sigma^2)$ with	
			$\sum x_i = 360$ and $\sum (x_i - \bar{x})^2 = 8100$, find a 90 % confidence interval	
			for μ .	
Q	2	(a)	Explain the general method of constructing a confidence interval.	09
		(b)	Test whether the following arrangement of H's and P's could be	
		(0)	regarded as random at 0.05 LOS.	
			10841404 40 1441104 11411	05
			ННННРРНННРРРРРРНННННРНННРРРРРРРНННН	
			OR	
O	2	(a)	Explain the procedure of constructing a 100(1-∞) % confidence Interval	
V	_	()	for the variance of a normal population	08
			whose mean is also unknown.	

	(b)	Given 3.6, 4.9, 5.2, 3.7, 4.3, 5.4, 4.2, 6.5 are observations of an observed random sample from a normal population $N(\mu, \sigma^2)$, construct a 90% equal tails confidence interval for σ .	06
Q 3	(a)		06
	(b)	If X_1, X_2, X_{16} is a random sample from a $N(\mu, \sigma^2=25)$ and $C=\{(x_1, x_2,, x_{16}) \mid \overline{x} \geq 78\}$ is a critical region to test $H_0: \mu=75$ against $H_1: \mu > 75$, evaluate the significance level and the power of the test characterised by the CR C at $\mu=76$ and $\mu=79$.	08
Q 3	(a)	State the differences between (1) Simple Hypothesis and Composite Hypothesis (2) Null Hypothesis and Alternative Hypothesis	06
	(b)	Given X_1 , X_2 ,, X_6 is a random sample of size 6 from a Bernoulli Probability Distribution with the probability function $f(x,\theta) = \theta^x (1-\theta)^{1-x} \qquad x = 0,1$ $\theta \in \{\frac{1}{2}, \frac{2}{5}\}$ $= 0 \qquad \text{Elsewhere.}$ Find the probabilities of Type I Error and Type II Error of the CR $C = \{(x_1, x_2,, x_6) \mid \sum x_i \leq 1\}$ is used to test $H_0: \theta = \frac{1}{2}$ against $H_1: \theta = \frac{2}{5}$.	08
Q ·	4 (a)	Critical Region of the level of significance to test a simple Null hypothesis against a simple Alternative hypothesis.	09
	(0)	Obtain a Best Critical Region of LOS \propto to test $H_0: p = p_0$ against $H_1: p = p_1$ (where $p_1 > p_0$) based on a random sample of a Poisson Probability distribution with mean p. OR	05
Q 4	(a)	Define a UMP test of size \propto . Find a UMP test of the Level of Significance \propto to test H_0 : $\theta = \theta_0$ against H_1 : $\theta > \theta_0$	08

based on a random sample of size n from a Normal Probability Distribution with mean θ and s.d. 1.

- (b) Explain Kolmogorov Smirnov one sample test covering purpose, 06 Method, test statistic and decision.
- Q 5 (a) What are the non-parametric methods? Explain their advantages over the parametric methods.
 - (b) Based on the following paired observations of two dependent Samples, test whether their medians have significant statistical difference using Wilcoxon signed ranks test at LOS 0.05.

· · · · · · · · · · · · · · · · · · ·				
Sample 2				
43.2				
31.3				
45.4				
40.1				
22.4				
24.6				
36.6				
22.3				
31.6				
47.4				
39.2				

Q 5 (a) Explain the sign test fully for two dependent samples.

(b) Describe the procedure of Wilcoxon signed ranks test and explain its superiority over sign test.

OR.

06

08 06