B.Sc.Sem-VI, Examination- 2 7 AUG 2020

ร. บุค ร. บุค	ร น _ะ ศ : ୧	[a] અથ [a] અથ	અથવા $[a(i)]$ અને $[a(ii)]$ જ લખવાના રહેશે. વા ૧ $[a(i)]$ અને ૧ $[a(ii)]$ તથા ૨ $[a]$ અથવા ૨ $[a(i)]$ અને ૨ $[a(ii)]$ ના 14 માર્કસ ના બદલે ૧૮ માર્કસ રહેશે. વા ૩ $[a(i)]$ અને ૩ $[a(ii)]$ તથા ૪ $[a]$ અથવા ૪ $[a(i)]$ અને ૪ $[a(ii)]$ ના 14 માર્કસ ના બદલે ૧૯ માર્કસ રહેશે. ન નં ૧ (b) , પ્રશ્ન નં ૨ (b) , પ્રશ્ન નં ૩ (b) તથા પ્રશ્ન નં ૪ (b) (ટુંકા પ્રશ્નો) વિદ્યાર્થીએ લખવાના નથી.			
Q1	A	Des	cribe the fixed effect mathematical model for ANOVA testing in one way	14		
		sification. Stating clearly-				
		(i)	The assumptions (ii) The hypothesis to be tested			
		(iii)	The test statistics to be used and (iv) ANOVA Table			
			OR .	_		
Q1	A	a)	What are the three basic principle of design of experiment. Explain in brief.	7		
		b)	Distinguish between fixed effect model and random effect model in the analysis of variance.	7		
Q1	В		Select the correct answer.	4		
i) An ANOVA obtained from 5 samples, where each samples contains 9 observations. The degrees of freedom for the critical value of F are A 5 & 9 C 4 & 8						
			B 45 & 4 D 4 & 40			
ii)The ANOVA method is used to test the equality of more then to population means at a time the test statistic is used in this method						
			known as: $A \qquad t - \text{test} \qquad C \qquad \chi^2 - \text{test}$			
			B F- test D Z- test			
			iii) In a completely randomized block design all the treatments are randomly selected.			
			A True C False			
			B Not decided D None			
			iv) The mean square error is the sum of squares divided by the A total no. of observations C Its degrees of freedom			
			B Its degrees of freedom-1 D None of the above			
Q2	A	Giv	e the complete analysis of RBD. Explain the situation when it is used.	14		
		Stat	e its Merits and demerits.			
			OR	_		
Q2	Α	a)	Outline the various steps in carrying out the ANOVA of Latin Square Design.	7		

b) Asset of data involving four tropical feed stuffs A,B,C,,D tried on 20 7 chicks are treated alike in all respects except the feeding treatments and each feeding treatment is given to 5 chicks. Analyse the data.

Feed	Gain in weight				
Α	45	39	32	11	42
В	51	102	20	79	53
C	32	87	71	85	82
D	159	127	159	75	144

$$[F(3,16)=3.24]$$

113	1.5	(b. 11
O_2	В	Select the correct answer.

i) 2x2 LSD does not exist.

A True

C False

B Partial true

D None of the above

ii) In LSD the no. of treatments, rows and columns are.....

A Seldom equal

C Usually equal

B equal

D Unequal

iii) For RBD of 5 treatments and 4 blocks degrees of freedom for error

s____.

A 20

C 12

B 16

D None of the above

iv) In LSD with 5 x 5 observations for two missing yield degrees of freedom for error is

A 12

C 10

B 25

D 16

Q3 A Obtain the formula for estimating two missing yield in two different block of 14 randomized block design. Also state the ANOVA of such design.

OR

Q3 A a) For the following data, identify the design, estimate the missing yield and analyze the data completely.

B 23	A 17	C 29
A 16	C (x)	B 16
C 24	B 18	A 12

[F(2,1)=200]

7

3

b) What is Incomplete Block Design? Define BIBD, give its example. 7 State any two parametric relationship of BIBD.

Q3 B Select the correct answer.

i) Missing Plot Technique can't be apply in case of CRD.

A True

C False

B Partial true

D None of the above

ii)In balanced incomplete block design one of the condition is

A $v(\lambda-1) = k(r-1)$ C $r(v-1) = \lambda(k-1)$

B $\lambda(v-1) = r(k-1)$ D $k(v-1) = r(\lambda-1)$

ì		iii) In case of symmetrical BIBD		
Q4	A	A vr =b k C br= vk B Both A & B D None of the above In a certain 2 ³ factorial experiment, there are 3 factors- N and P & K. write down all treatment combinations. Derive the formula for estimating- i) Main effect of N, P & K ii) Joint effect of NP, NK, PK & NPK iii) ANOVA of the design OR	14	
Q4	A	a) What is confounding? Define total and partial confounding. Giving illustration of each.	7	
Q4	В	b) Explain Yate's Method for 2 ³ factorial experiments. Select the correct answer.	7 3	
		i)The no. of times each experimental units is observed in a factorial design is known as		
		A Replication C Experimental condition B Factor D None of the above		
		ii)Treatment contrast confounded same in all the replication then it is known as		
		A Partial confounding C Total confounding B Confounding D None of the above iii)Different treatment contrast confounded in different replication then it is known as	n	
		A Total confounding C Partial confounding B Confounding D None of the above		