M. Sc Chemistry Examination, SEM-I

November – 201 🗜

Physical Chemistry Paper – III (Code: 2763)

(Chemical Thermodynamics)

T	Time: 2.5 hours			: 70		
Instructions: All questions carry equal marks						
1	(A) Define terms: $\overline{H_2}$, $\overline{H_1^0}$, $\overline{L_2}$, L			02		
	(B) Derive following relationship			08		
		$Log\frac{\gamma_{\pm}}{\gamma_{\pm}} = \frac{\overline{L_2}}{4.576}$	$\left[\frac{1}{T} - \frac{1}{T!}\right]$			
	(C) Calculate the heat change when one mole of H ₂ SO ₄ is added to a solution of one mole of H ₂ SO ₄ in 400 moles H ₂ O at 25°C.					
	Given: moles H ₂ O	$\overline{L_{1,}}$ cal. Mol^{-1} -2.16 -1.54	L ₂ , cal. Mol ⁻¹ 23540 5842 5638	04		
	OR					
1	(A) Deduce an expression $\Delta H_{c\rightarrow 0} =$	$-n_2\phi L$ for heats	of dilution to infinite dilution.	04		
	(B) Deduce the apparent molar heat	t capacity.		06		
	(C) Assuming \overline{L}_2 to remain constant, calculate the relative change in the mean ionic activity coefficient of 1 molar sulphuric acid solution from 0° to 27°C \overline{L}_2 for 1 molar sulphuric solution is 6000 cal.					
2	(A) Explain homogeneous and heter	ogeneous equil	ibrium reactions.	06		
	(B) Define equilibrium constant. Explain effect of concentration and pressure on it.			06		
	(C) Does a catalyst affect the equilibrium position? Explain.					
	OR					
2	2 (A) Does equilibrium constant has unit and depend on temperature? Explain.					
	(B) Distinguish between homogeneous and heterogeneous equilibrium.			04		
	(C) Explain Kc in homogeneous and	d heterogeneou	s system with suitable examples.	06		
3	(A) Discuss in brief: "Vapor pressu	re curves".		08		
	(B) Explain ideal and non-ideal solu	itions giving su	itable examples.	06		
OR						
3	(A) Discuss "Raoults law" and Henry	-		08		
	(B) Explain deviation of the constituents of a mixture from ideal behaviour.					
	(C) Write final equation suggested by Duhem-Margules.					

4	(A) Give definition of activity.	02
	(B) Define: Osmotic cell and Rational activity coefficient.	04
	(C) Explain osmotic pressure method used for determining activity of solvent.	08
	OR	
4	(A) Explain in detail Isopiestic method.	04
	(B) Discuss the E.M.F. method for determining activity of solvent in solution	08
	(C) What is activity coefficient?	02
5	(A) Discuss Lewis-Randall rule.	07
	(B) The volume of NaCl solution per 1000 gm of water at 25°C is given by	07
	$V = 1002.9 + 16.40 \text{m} + 2.5 \text{ml} - 1.2 \text{m}^3 \text{ ml mol.}^{-1} Calculate partial molar volume and appendix volume of 1 molar NaCl solution. (Given: molar volume of pure water at 25 18.069 ml mol-1)$	
	OR	
5	(A) Discuss the determination of fugacity by equation of state method.	07
	(B) The variation of the density of aqueous sodium nitrate solution with molality at 25° C is given by: $\rho = 0.99708 + 3.263 \times 10^{-2} \text{ m} - 9.63 \times 10^{-4} \text{ m}^{3/2} - 4.73 \times 10^{-5} \text{ m}^2 \text{ gm/ml}$. Using	
	the expression: $\overline{V}_2 = 1/\rho [M_2 - V d\rho/dm]$, determine the partial molar volume of sodium in the expression of $\overline{V}_2 = 1/\rho [M_2 - V d\rho/dm]$, determine the partial molar volume of sodium in the expression of $\overline{V}_2 = 1/\rho [M_2 - V d\rho/dm]$.	шгањ
	in 1.0 molar (M.W. of sodium nitrate = 85 gm/mole)	