M.Sc. (IT) Semester – I Examination

Nov/ >-2014

Paper No. 2: Discrete Mathematics (2737)

Duration: 2½ Hours Total Marks:			
Q.1	(a)	If we define a relation R on a set of integers I as follow then check whether R is equivalence relation or not.	[7]
		$R = \{ (x, y) \mid x, y \in I, x - y \text{ is divisible by 5 } \}.$	
	(b)	Explain following with example:	[7]
		(i) Greatest Lower Bound (ii) Least Upper Bound	
		OR	
Q.1	(a)	Draw Hasse diagram for the following POSETs:	[7]
		 (i) < P(A), ⊆ >, where A = {a, b, c} (ii) < S₁₂, D >, where D denotes the relation of divisor (iii) < S₆, ≤ >, where ≤ denotes the relation of "Less than or equal to". 	
	(b)	State and prove following properties of Lattice:	[7]
		(i) Commutative Law (ii) Associative Law	
Q.2	(a)	Explain permutation and combination with example.	[7]
	(b)	How many words can be formed using all letters of 'TULSI'? How many of them starts with 'T'?	[7]
		OR	
Q.2		State Inclusion — Exclusion principle. Using this principle, find the number of integers from 1001 to 3000 which are not divisible by each of 3, 5 and 7.	[14]
Q.3	(a)	Construct truth tables for the following:	[7]
		(i) $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$ (ii) $((\neg q) \land (q \leftrightarrow p)) \rightarrow (\neg p)$	
	(b)	Using Mathematical Induction Principle, prove that $n^3 + 2n$ is divisible by 3 for all natural numbers n.	[7]

Q.3 Explain Tautology and Contradiction with example. (a)

[7]

- In each of the following cases, verify whether given two formulas are [7] (b) equivalent or not.

- (i) $\neg (p \lor q \lor r)$
- and
- $(\neg p) \land (\neg q) \land (\neg r)$
- (ii) $p \vee (p \wedge q)$
- and
- Define the following terms: Q.4

[7]

- (i) Simple graph (ii) Adjacent vertices (iii) isolated vertex (iv) cycle
- (v) connected graph (vi) regular graph (vii) subgraph.
- (b) Explain the following graph operations with example:

[7]

- (i) Union of two graphs
- (ii) Intersection of two graphs.

OR

Q.4 Consider the following graph and answer the questions given below: [7] (a)

- Give names to each vertices and edges (i)
- Find degree of each vertices (ii)
- (iii) Find any two circuits.
- (iv) Find centre(s) of the graph.

Explain isomorphism of graphs with example.

[7]

Prove that a tree with n vertices has n-1 edge. Q.5 (a)

[7]

Describe Travelling Salesman problem. (b)

[7]

OR

Q.5 Write a note on the following:

[14]

- Konigsberg Seven Bridge Problem a)
- Adjacency matrix of a graph. b)