	om: (Old)
Paper – 4: Number Theo Time: 1 ½ Hours] 2 3 FEB 2021	Total Marks:

lin	ie: I	2 3 FEB 2021 [Total Mark	ks: 42
Attempt any three questions out of four.			
Q.1		Explain: Euclid's algorithm for determination of gcd of two integers.	[14]
		OR	
Q.1	(i)	Prove that if $ca \equiv cb \pmod{n}$ then $a \equiv b \pmod{\frac{n}{d}}$, where	[7]
		$d = \gcd(c, n).$	
	(ii)	Find the remainder when the integer $1^5 + 2^5 + \dots + 51^5$ is divided by 3.	[7]
Q.2		Prove or disprove: "Every positive integers can be expressed as product of prime; this representation is unique apart from the order in which the factors occur".	[14]
		OR	
Q.2	(i)	Show that: The number $\sqrt{2}$ is irrational.	[7]
	(ii)	Show that there are infinitely many primes of the form $4k + 1$.	[7]
Q.3		Prove or disprove: Converse of Wilson's theorem.	[14]
		OR	
Q.3	(i)	Prove that the integer $111^{333} + 333^{111}$ is divisible by 7.	[7]
	(ii)	Solve: $x \equiv 1 \pmod{3}$, $x \equiv 2 \pmod{5}$, $x \equiv 3 \pmod{7}$	[7]
Q.4		Prove that the Euler's totient function is multiplicative.	[14]
		OR	
Q.4	(i)	Find the formula of $\tau(n)$ for $n > 1$.	[7]

[7]

(ii) Prove that: σ is multiplicative.