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Attempt any three questions out of four.
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Define topological space. Also discuss 7 - openand J - closed sets. [14]
Discuss with all details cofinite topology.

OR
Define door space and give an example of door space. [7]

Let F; and F, be closed subsets of a topological space X then prove [7]
that F; U F, is a closed set.

Define closure and interior of a set. If 4 is any subset of a topological [14]
space (X, J). Then prove that 4 is the smallest closed set containing
A.

OR
In usual notation prove following results [7]
(WA cB = A° c B (ii) (ANnB)° = 4° N B®
[n usual notation prove following results [7]
() AUB=AUB (i) AnBcAnB
In a topological space define continuous map. Let X and Y be a [14]

topological space. Prove thatamap f: X — Y is continuous iff the
inverse image of every open setin Y is openin X.

OR
Show that every discrete space is Ty space. [7]
Prove that discrete topological space is Ty space. [7]

Prove that two open subsets of a topological space are separated [14]
iff they are disjoint.

OR
Prove that a continuous image of a connected space is connected. [7]
Prove that each singleton set in a Hausdroff space is closed. [7]
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