M.sc Mathematics C.No: 2749 Paper No: 2 Topology – I Marks: 70 Q.1 (a) Write topological space. Construct three topological τ_1 , τ_2 , τ_3 such that $\tau_1 \subset \tau_2 \subset \tau_3$. [7] (b) In usual notations prove the following results. [7] (i) $\overline{\phi} = \phi$ (ii) $A \subset B \Rightarrow \overline{A} \subset \overline{B}$ (iii) $= \overline{A} = \overline{A}$ OR Q.1 (a) Define base for a topology. Let X,Y,Z be topological spaces. And $f: X \to Y$, $g: Y \to Z$ be continuous then prove that $gof: X \rightarrow Z$ is continuous. [7] (b) In a topological space (X,τ) Prove that an arbitary intersection of closed set is closed. And finite union of closed sets is closed. [7] (a) Let X and Y be topological spaces. Prove that a map $f: X \to Y$ is continuous if and only if Q.2 The inverse image under f of every closed set in Y is closed in X. [7] (b) State and prove pasting lemma. 7] OR Q.2 (a) In usual notation prove that $\overline{A} = A \cup A'$. [7] (b) State and prove uniform limit theorem. [7] (a) Prove that limit of a sequence in a metric space is unique Q. 3 [7] (b) Prove that limit of a sequence in a T_2 space is unique. 7] OR (a) Prove that contraction on X is a unique. Q.3 [7] (b) Prove that Z is nowhere dense set. [7]

Q. 4	(a) Prove that connectedness is a topological property.	[7]
	(b) State and prove intermediate value Theorem.	[7]
	OR	
Q.4	(a) If $X \times Y$ is connected space then prove that X and Y are connected.	[7]
	(b) Prove that every path connected space is connected.	[7]
Q. 5	(a) Prove that every finite topological space is compact.	[7]
	(b) Prove that every indiscrete topological space is compact.	[7]
	OR	
Q.5	(a) Every compact metric space is bounded.	[7]
	(b) Prove that compactness is a topological property.	[7]