M.Sc. Physics Semester - I Phys-C-104 : Digital Electronics and Operational-Amplifier

Paper Code: 4515

Time: 2Hrs 30 Min

APREL-2016

MM: 70

Note: Attempt all questions. Figures to the right indicate marks. Use neat figures to explain.

- 1. (a) Explain 1-line to 4-line de-multiplexer with necessary logic [6] diagram, function table and equation.
 - (b)Design SOP circuit that will generate an odd parity bit for a 4-bit input. [6] Write necessary Boolean expression. Draw logic diagram and truth table.
 - (c) Give any four names of display devices.

[2]

OR

- (a) Design 16-bit even parity checker using IC 74180s and explain with necessary diagram.
 - (b) Explain keyboard encoder with necessary circuit.

[7]

[7]

2. (a) Draw out put waveform for following input data applied to negative edge triggered flip flop.

[4]

- (b) Convert a R-S flip-flop into a clocked D-flip-flop. Why is a clock needed in digital timing circuits? [7]
- (c) Explain toggling in a JK flip-flop. If a clock of 1 KHz is input on the Toggle flip-flop, what will be its output frequency?

[3]

OR

- 2. (a)Explain NAND gate S-R latch using necessary logic diagram, timing [7] diagram and verify truth table.
 - (b)Explain master-slave J-K flip flop using necessary Logic diagram truth [7] table and timing diagram.
- 3. (a) Explain the effects of propagation delay in ripple counter.

[4]

(b) Design and explain four bit up-counter using negative edge-triggered flip

[10]

flop with logic diagram and timing diagram.

 $\cap R$

3.	(a) Explain two bit ripple up and ripple down counter using necessary logic diagram and timing diagram with negative edge triggered flip flops.	[7]
	(b) Explain parallel-in serial-out shift register with block diagram and logic diagram.	[6]
	(c) What does the triangle on the clock input of a J-K flip-flop mean?	[1]
4.	(a)Design low pass filter with cutoff frequency 5 kHz with pass band gain of 3.	[6]
	(b)What do you mean by quadrature oscillator?Draw its circuit diagram. Explain in brief.	[6]
	(c)Calculate required values of components used in it while designing with oscillating frequency 159Hz.	[2]
	OR	
4.	(a) Draw the schematic diagram of a sawtooth generator. Explain its operation. Also draw its input and output waveforms.	[8]
	(b) Explain all pass filter with necessary circuit diagram, and out put waveforms. For all pass filter, find the phase angle if the frequency of input voltage is 1kHz.	[6]
5.	(a) Explain the 555 as an adjustable multivibrator with circuit diagram, output waveforms which show final output voltage waveform and voltage across capacitor. Write necessary expressions.	[7]
	(b) In above design of multivibrator let R_A =2.2 $k\Omega$, R_B =3.9 $k\Omega$, and C=0.1 uF. Determine the positive pulse width t_c and free running frequency f_o .	[3]
	(c) What is Phase Lock Loop? Explain it with a block diagram.	[4]
	OR	
5.	(a) Explain the R-2R DAC using its circuit diagram, equation for output and its transfer curve (i/p vs o/p).	[7]
	(b) Classify voltage regulators. Explain fixed voltage regulators in detail.	[7]