M.Sc. Physics Semester – 1 Examination Phys-C-102 - {Mathematical Methods in Physics} Paper Code: 22924

1 8 FEB 2021

Time: 01 Hrs 30 Min.

Maximum Marks: 42

Note: Answer **any three** questions. Figures to the right indicate marks allotted. All symbols have their usual meaning.

Que:1	(a) Derive Rodrigues formula for Legendre's polynomial.	8
	(b) Prove that $x^4 = \frac{1}{35} [8P_4(x) + 20P_2(x) + 7P_0(x)].$	3
	(c) Prove $J_{1/2}(x) = \sqrt{\left(\frac{2}{\pi x}\right)} \sin x$.	3
	OR	
Que:1	(a) Write down Rodrigues formula for Hermite's polynomials	7
Que.1	and derive first 6 Hermite's polynomials at $x = 3$.	
	(b) Solve $\frac{\partial u}{\partial t} - c^2 \frac{\partial^2 u}{\partial x^2} = 0$ using separation variable method.	7
	ot ox-	
Que:2	(a) Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in Laurent's series valid for $1 < z <$	8
	3 and z > 3.	
	(b) Find the residue at all poles: (i) $\frac{e^{iz}}{9Z^2+4}$ and (ii) $\frac{z+2}{z^2+9}$	6
	OR	
Que:2	(a) State and prove Cauchy's theorem.	7
	(b) Evaluate: $I = \int_0^{2\pi} \frac{d\theta}{13+5\sin\theta}$.	7
Que:3	If $F(S)$ and $G(S)$ are Laplace transforms of functions $f(t)$ and $g(t)$	14
	then prove $F(S)G(S) = \int_0^\infty e^{-st} (f * g) dt$ where,	
	$(f \star a) = \int f(u)a(t-u)du$	
	$(f * g) = \int_{0}^{\infty} f(u)g(t - u)du$	
	OR	
Que:3	If Fourier transform is defined as $\hat{f}(s) = \int_{-\infty}^{\infty} e^{-2\pi i s t} f(t) dt$	7
	(a) Find Fourier transform of rectangle function $\pi(t)$ defined as	•
	$\pi(t) = \begin{cases} 1, & t < 1/2 \\ 0, & t \ge 1/2 \end{cases}$	
	(b) Find Fourier transform of triangle function $\Lambda(t)$ defined as	7
	$\Lambda(t) = \begin{cases} 1 - t , & t \le 1\\ 0, & otherwise \end{cases}$	
	(U, otnerwise	
Que:4	(a) Describe use of different indices in tensors. Explain quotient	14
	rule in detail.	
0	OR (a) Explain the followings. (i) Addition and subtraction of	7
Que:4	tensors, (ii) Contraction of tensors and (iii) Spinors.	3
	(b) Describe symmetric and antisymmetric tensors.	20
	(c) Explain direct product of tensors.	4
